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• Backgrounds


• Examples 
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The Real World Actions

remote sensing, 
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control in wireless
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Introduction
• Universal challenges: 


• Sequential decision making, real-time (partial) observations.


• Contrast between optimal and timely information extraction.


• Entire Goal:  

Real-time (partial) 
observations

Sequential  
decision-making

Multi-agent Networks
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Introduction
• Outline of the Thesis:


• Chapter 2 — Age of information (AoI): decentralized transmission policies, minimum AoI, 
random access channels. 


• Chapter 3 — Beyond AoI: decentralized sampling and transmission policies, minimum 
estimation error, random access channels.


• Chapter 4 — Extension to Ad-hoc Networks: decentralized sampling and transmission 
policies, minimum AoI/estimation error, ad-hoc networks.


• Chapter 5 — Tradeoffs between AoI and rate: broadcast transmission policies, AoI vs. 
communication rate.


• Chapter 6 — From AoI to Public Health: testing and isolation policies, processes evolving 
temporally and spatially, containing of the spread of COVID-19.
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Backgrounds
• Quality of user experience > Quality of service [1].


• Traditional designs: 


• Now, information is collected and communicated in real-time.


• Go beyond classical metrics: connectivity, rate, reliability, bit error, and latency.


• Age of Information, , quantify the freshness of information [2, 3]


• : generation time of the latest update, .


[1] Banerjee-Ulukus, The freshness game: timely communications in the presence of an adversary, 2023.

[2] Kaul-Gruteser-Rai-Kenny, Minimizing age of information in vehicular networks, 2011.

[3] Kaul-Yates-Grusteser, On piggybacking in vehicular networks, 2011.

hk

uk hk = k − uk
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Problem Formulation
•  identical source nodes 


• Physical process , 


• Collision channel, collision feedback


• Minimum mean square error estimator: 


• Age of Information for source : 


• Deciding in a decentralized manner.


• Goal: minimize normalized average estimation error (NAEE)


M

Xi,k+1 = Xi,k + Λi,k Λi,k ∼ 𝒩(0,σ2)

X̂i,k

i hi,k

L(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

(Xi,k − X̂π
i,k)2]
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Chapters 2 ~ 4
Motivations & Literature Review
• Sampling: single-user systems [1,2,3,4,5]  Our works: multi-user systems


• Reliable vs. Timely Communication: centralized policies [6,7,8,9]  Our works: decentralized 
policies


• Distributed decision making: no collision feedback [10,11,12]  Our works: collision feedback


• Ad-hoc networks: centralized policies or decentralized stationary randomized policies [13,14]  
Our works: general decentralized policies

→

→

→

→

[1] Rabi-Moustakides-Baras, Adaptive sampling for linear state estimation, 2012.

[2] Lipsa-Martins, Remote state estimation with communication costs for first-order LTI systems, 2011.

[3] Molin-Hirche, Event-triggered state estimation: an iterative algorithm and optimality properties, 2017.

[4] Nayyar-Basar-Teneketzis-Veeravalli, Communication scheduling and remote estimation with energy harvesting sensor, 2012.

[5] Chakravorty-Mahajan, Remote estimation over a packet-drop channel with Markovian state, 2020.

[6] Talak-Modiano, Age-delay tradeoffs in queueing systems, 2021.

[7] Sun-Polyanskiy-Uysal Biyikoglu, Remote estimation of the Wiener process over a channel with random delay, 2020.

[8] Kadota-Sinha-Modiano, Scheduling algorithms for optimizing age of information in wireless networks with throughput constraints, 2019.

[9] Kadota-Modiano, Minimizing the age of information in wireless networks with stochastic arrivals, 2019.

[10] Gatsis-Pajic-Ribeiro-Pappas, Opportunistic control over shared wireless channels, 2015.

[11] Taricco, Joint channel and data estimation for wireless  sensor networks, 2012.

[12] Zhang-Vasconcelos-Cui-Mitra, Distributed remote estimation over the collision channel with and without local communication, 2022.

[13] Tripathi-Talak-Modiano, Information freshness in multihop wireless networks, 2023.

[14] Jones-Modiano, Minimizing age of information in spatially distributed random access wireless networks, 2022.



Oblivious Policies, Non-oblivious Policies, and Age of Information
• Oblivious Policies: actions do not depend on samples ( ).


• Non-oblivious Policies: actions depend on samples ( ).


• In oblivious policies, minimization of estimation error  minimization of AoI


• Minimize normalized average AoI (NAAoI)


Xi,k

Xi,k

⇔

J(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

hπ
i,k]
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Lemma 1. In oblivious policies, for any node , .i 𝔼[(Xi,k − X̂i,k)2] = 𝔼[hi,k]σ2
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Oblivious Policies and Age of Information
• More general setting: generating packets by a Bernoulli process with 


• When  is small


• When  is large: Select nodes through a thinning process


• age-gain [2]  age reduction when receiving a new packet


• Thinning process: age-gain   active, slotted ALOHA


•   adaptive thinning,   stationary thinning

[1] Bertsekas-Gallager, Data Networks, 2nd ed. Hoboken, NJ, USA: Prentice-Hall, 1992.

[2] Kadota-Modiano, Minimizing the age of information in wireless networks with stochastic arrivals, 2021.

θ

θ

θ

→

> 𝚃(k) →

𝚃(k) → 𝚃* →
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J(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

hπ
i,k]

Theorem 1. Suppose  and define . Any slotted ALOHA scheme [1]  

achieves .  lower bound, optimality

θ < 1/eM η = lim
M→∞

Mθ

lim
M→∞

JSA(M) = 1/η →

Chapters 2 ~ 4



Theorem 2. For stationary thinning, . For any , .𝚃* = ⌊eM − 1/θ + 1⌋ θ = 1/o(M) lim
M→∞

J(M) = e/2

N
AA

oI

N
AA

oI
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Oblivious Policies and Age of Information J(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

hπ
i,k]

Chapters 2 ~ 4
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• Stationary thinning can be applied to other transmission policies. 


• Theoretical guarantees & simulations are provided.


• Achievements:


• [C1] X. Chen, K. Gatsis, H. Hassani and S. Saeedi-Bidokhti, Age of Information in Random 
Access Channels, IEEE ISIT, 2020.


• [J1] X. Chen, K. Gatsis, H. Hassani and S. Saeedi-Bidokhti, Age of Information in Random 
Access Channels, IEEE TIT, 2022. 


• IEEE Communications Society & Information Theory Society Joint Paper Award 2023
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Oblivious Policies and Age of Information J(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

hπ
i,k]

Chapters 2 ~ 4



Non-oblivious Policies
• Error process: 


• Error-based Thinning: active, slotted ALOHA.


• Minimize   find optimal 


• For oblivious policy, , 

ψi(k) = |Xi(k) − X̂i(k) |

ψi(k) ≥ β →

L(M) → β*

Joblivious ≈ e/2 Loblivious ≈ eσ2/2
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L(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

(Xi,k − X̂π
i,k)2]

Theorem 3. Let  be sufficiently large. The optimal  is approximately given by , 
and .

M β* β* ≈ σ eM
L̂ ≈ eσ2/6

Proposition 1. For large , .M Loblivious/L̂ ≈ 3

Chapters 2 ~ 4
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Non-oblivious Policies L(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

(Xi,k − X̂π
i,k)2]
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• The framework can be extended to two general settings:


• Extension 1: , , . 


• Extension 2: unreliable channels, packets are erased with an erasure probability.


• Achievements:


• [C2] X. Chen, X. Liao, and S. Saeedi-Bidokhti, Real-time Sampling and Estimation on Random 
Access Channels: Age of Information and Beyond, IEEE INFOCOM, 2021.


• [J2] X. Chen, X. Liao, and S. Saeedi-Bidokhti, Beyond AoI: Real-time Sampling and Estimation 
on Reliable and Unreliable Random Access Channels, IEEE/ACM ToN, submitted.


• IEEE INFOCOM Student Conference Award 

Xi,k+1 = γXi,k + Λi,k Λi,k ∼ 𝒩(0,σ2) γ > 0
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Non-oblivious Policies L(M) = min
π

lim
K→∞

𝔼[ 1
KM2

K

∑
k=1

M

∑
i=1

(Xi,k − X̂π
i,k)2]
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• Consider an ad-hoc (connected) network with  sources.


• Physical process: , 


• Each source can be either a sender or a receiver.


• Collision channel, collision feedback


• Every source estimates the processes for every other sources.


• Source : estimate  for source  ( ), calculate the AoI of source  ( ).


• Every source decides (i) when to sample, (ii) who to communicate with, and (iii) 
what to transmit.

M

Xi,k+1 = Xi,k + Λi,k Λi,k ∼ 𝒩(0,σ2)

i Xj,k j X̂j
i,k j hj

i,k
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General Setting in Ad-hoc Networks
Chapters 2 ~ 4



• Two main challenges  Multi-agent Reinforcement Learning


(i) increased dimensions of decision making,


(ii) network topologies.


• Goal: minimize the average estimation error,





• In oblivious policies, 


→

L(M) = min
π

lim
K→∞

1
M2K

𝔼[
K

∑
k=1

M

∑
i=1

M

∑
j=1

(Xj,k − Xj,π
i,k )2]

J(M) = min
π

lim
K→∞

1
KM2

𝔼[
K

∑
k=1

M

∑
i=1

M

∑
j=1

hj,π
i,k ]
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• Classical Actor-Critic Framework [1]


[1] Mnih-Badia-Mirza-Graves-Harley-Lillicrap-Silver-Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning, 2016.
17

Graphical Reinforcement Learning
Chapters 2 ~ 4



• Critic  Graph Neural Networks 


• Actor  Graph Recurrent Neural 
Networks


• State  Observation


• : # of parameters in        
is independent of # of sources. Transferability

←

←

←

A ∼ FSoftmax(HBH′ ) B

18

Graphical Reinforcement Learning
Chapters 2 ~ 4



• Graphon [1]: a limit of sequence of convergent graphs. , bounded, 
measurable, and symmetric.


• Graphon signal [1]:  


• Output & operator:  


[1] Ruiz-Chamon-Ribeiro, Transferability properties of graph neural networks, 2022.

W : [0,1]2 → [0,1]

X ∈ L2([0,1])

Y(v) = (TWX)(v) = ∫
1

0
W(u, v)X(u)du

19

Transferability

Graph Ξn Graphon

Graph Signal 

xn

Graphon Signal

X

Chapters 2 ~ 4



20

Transferability

Graph  
Neural Network 

(GNN)
Graphon  

Neural Network 
(WNN)

Graph Recurrent 
Neural Network 

(GRNN)

Graphon Recurrent 
Neural Network 

(WRNN)

Chapters 2 ~ 4



• Given , a  with dimension  can be induced by 


• Given , a  is induced from .


•

(W, X) (Ξn, xn) n (W, X)

(Ξn, xn) (WΞn
, Xn) (Ξn, xn)

21

Transferability in GRNN

Assumption 1. The spectral response  of a convolutional filter  is -Lipschitz in 
, and -Lipschitz in  with . Moreover, .

h(λ) TH,W L
[−1, − ϵ] ∪ [ϵ,1] ℓ (−ϵ, ϵ) ℓ < L |h(λ) | < 1

Assumption 2. The activation functions satisfy , and .|ρ(x) − ρ(y) | ≤ |x − y | ρ(0) = 0

Theorem 4.  is a WRNN, the convolutional layers of  satisfying 
Assumptions 1 & 2. Let ,  be defined above, . Then, 

, where  as . 
Remark:  as .

Y = Φ(X; W) Φ(X; W)
(Ξn, xn) (WΞn

, Xn) Yn = Φ(Xn; WΞn
)

| |Y − Yn | | ≤ Θn | |X | | + c | |X − Xn | | Θn → 0 n → ∞
| |Y − Yn | | → 0 n → ∞

Chapters 2 ~ 4



• Given   obtain . [refer to the Thesis]


• Transferability          graph filters [1]


[1] Ruiz-Chamon-Ribeiro, Transferability properties of graph neural networks, 2022.

An → Ãn
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Transferability in Action Distribution

Theorem 5. Let  is a WRNN satisfying Assumptions 1 & 2, then  
as .

Y = Φ(X; W) ∥Ã − Ãn∥ → 0
n → ∞

Chapters 2 ~ 4



• Achievements:  this work is ready to submit.
23

Simulations
Chapters 2 ~ 4



• Tradeoffs between AoI and communication 
rate in broadcast networks


• Result 1: Coding is beneficial to the AoI, and 
the benefits increases with # of users


• Result 2: Tradeoffs exist  the system has to 
sacrifice AoI to achieve a higher rate

→

24

Chapter 5

• Achievements:


• [C3] X. Chen and S. Saeedi-Bidokhti, Benefits of Coding on Age of Information in Broadcast Networks, IEEE 
ITW, 2019.


• [C4] X. Chen, R. Liu, S. Wang, and S. Saeedi-Bidokhti, Timely Broadcasting in Erasure Networks: Age-Rate 
Tradeoffs, IEEE ISIT, 2021.


• [J3] X. Chen and S. Saeedi-Bidokhti, Timely Broadcasting Mechanisms in Erasure Networks: Age-Rate 
Tradeoffs, IEEE TWC, submitted.  



Chapter 6

• Timely inference and detection for processes that evolve both temporally and 
spatially. COVID-19 in contact networks


• How to contain the spread as soon as possible? Sequentially policy.


• Testing has a dual role: (i) detect infected nodes, and (ii) learn the spread.


• Paradigm I: contact tracing [1, 2] —— pure exploitation


• Paradigm II: random testing —— pure exploration


• Silent spread: an undetected individual may infect its neighbors 


• Tradeoffs between exploitation of knowledge and exploration of the unknown.

25

Backgrounds

[1] Kojaku,-Dufresne-Mones-et al, The effectiveness of backward contact tracing in networks, 2021.

[2] Ou-Sinha-Suen-et al. Who and when to screen: Multi-round active screening for network recurrent infectious diseases under uncertainty, 2020.



Chapter 6

• Estimation & Prediction: SIR and variants [1,2,3]  Our 
work: testing and isolation policy.


• Differential Equation Approximations: no 
heterogeneity [4,5]  Our work: heterogeneity & 
spread 


• Comparing to other RL: 


• Multi-armed Bandit [6,7]  Our work: time-variant actions


• Active Search [8,9]  Our work: dynamic target


• POMDP [10]  Our work: general setting


• Novel Exploitation-Exploration Tradeoffs

→

→

→

→

→
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Chapter 6

• Susceptible ( ), Latent ( ), Infectious ( ), and Recovered( )


• : transmission rate, : ill-being rate, : recovery rate


• An individual tested positive will be isolated immediately.


• A recovered individual can not be infected again.


• Only infectious individuals can infect others.


• : testing budget; : the set of tests; : the cumulative infections


• Goal: minimize the cumulative infections under budget constraints


S L I R

β λ γ

B(t) 𝒦π(t) Cπ(T)

min
π:|𝒦π(t)|≤B(t),0≤t≤T−1

𝔼[Cπ(T)]

27

Problem Formulation



Chapter 6

• : the expected number of newly infectious nodes incurred by nodes in  on day .


• By Algorithm A in [1], ,


 


[1] Ilev, An approximation guarantee of the greedy descent algorithm for minimizing a supermodular set function, 2001.

S(𝒟; t) 𝒟 t

S(𝒱(t)\�̃�(t); t) ≤ (1 + ϵt)OPT

ϵt = max
a∈𝒱(t)

S(𝒱(t); t) − S(𝒱(t)\{a}; t) − S(a(t); t)
S(𝒱(t); t) − S(𝒱(t)\{a}; t)

28

Supermodularity

Lemma 2. . 

Remark     

𝔼[Cπ(t + 1) − Cπ(t)] = S(𝒱(t)\𝒦π(t); t)

min
π:|𝒦π(t)|≤B(t),0≤t≤T−1

𝔼[Cπ(T)] → min
|𝒦π(t)|≤B(t)

S(𝒱(t)\𝒦π(t); t)

Theorem 6.  is a supermodular [1] and increasing monotone function on .S(𝒦π(t); t) 𝒦π(t)



Chapter 6

• Reward:   the expected number of newly infectious nodes incurred 
by node  on day .


• Exploitation: Re-arrange  in descending order, and test the first  nodes.


• Exploration: Test node  with probability .


• Question: How to estimate ?

ri(t) = S({i}; t) →
i t

{ri(t)}i B(t)

i min{1,B(t)ri(t)/∑ ri(t)}

{ri(t)}i
29

Exploitation and Exploration

Lemma 3. . 

Remark     

S(𝒱(t)\𝒦π(t); t) ≤ S(𝒱(t); t) − ∑
i∈𝒦π(t)

ri(t)

min
|𝒦π(t)|≤B(t)

S(𝒱(t)\𝒦π(t); t) → max
|𝒦π(t)|≤B(t) ∑

i∈𝒦π(t)

ri(t)



• : the prior probability vector of the true probability vector of node 


• : the posterior probability vector of the true probability vector of node 

ui(t) i

wi(t) i

30

Chapter 6
Message-Passing Framework



• Example 1: A line network with  nodes. Set .  No  and  
states. . On the initial day, each node is infected with probability . No 
isolation policy.

N β = 1, λ = 0, γ = 0 → L R
B(t) = 1 1/N

Theorem 7. Without the backward updating, for any testing policy that sequentially 
computes , with probability ,  as  for large . With 

the backward updating, there exists a policy, such that  for .

{ui(t)}i 1/e ∑
i

| | vi(t) − ui(t) | | → Θ(N) t → ∞ N

∑
i

| | vi(t) − ui(t) | | = 0 t ≥ 2N

31

Chapter 6
Backward Updating Is Necessary



• Example 2: A line network with  nodes. Set .  No  and  
states. . Node  is infected. A slightly wrong initial estimate.


• A specific exploration:  (out of ) test is done randomly, and the other  tests 
are done following exploitation.

N β = 1, λ = 0, γ = 0 → L R
B(t) = 10 1

1 10 9
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Chapter 6
Exploration Is Necessary

Theorem 8. With probability , on day , , where  is 

a constant depending on  and , and  can be arbitrarily large.

p0 ≥ 99/100 T
CExploitation

CExploration ≥ c(N, p0) c(N, p0)

N p0 c(N, p0)
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Chapter 6
Simulations



• Unregulated delay: initial start  the first time intervention start


• Clustering coefficient: nodes in a graph tend to cluster together


• Shortest path-length: the average shortest distance between every pairs


• Conclusion: When the above parameters increase, exploration becomes more 
beneficial as it provides better estimates of nodes’ probabilities of infection.


• Relationship to previous chapters: (1) Temporal processes  Temporal and 
spatial processes; (2) Timeliness of nodes  Timeliness of networks


• Achievements:


• [J4] X. Chen, H. Nikpey, J. Kim, S. Sarkar, and S. Saeedi-Bidokhti, Containing a spread through sequential 
learning: to exploit or to explore? TMLR, 2023.

→

→
→
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Chapter 6
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