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Introduction

* Universal challenges:
e Sequential decision making, real-time (partial) observations.

 (Contrast between optimal and timely information extraction.

e Entire Goal:

-
| Multi-agent Networks |
| |
N Theoretical Foundations |
i Real-time (partial) | Sequential !
| observations o | | decision-making H
| - Algorithmic Designs - :
| . O |

| -




Introduction
e Qutline of the Thesis:

 Chapter 2 — Age of information (Aol): decentralized transmission policies, minimum Aol,
random access channels.

 Chapter 3 — Beyond Aol: decentralized sampling and transmission policies, minimum
estimation error, random access channels.

« Chapter 4 — Extension to Ad-hoc Networks: decentralized sampling and transmission
policies, minimum Aol/estimation error, ad-hoc networks.

 Chapter 5 — Tradeoffs between Aol and rate: broadcast transmission policies, Aol vs.
communication rate.

 Chapter 6 — From Aol to Public Health: testing and isolation policies, processes evolving
temporally and spatially, containing of the spread of COVID-19.



Chapters 2 ~ 4

Backgrounds
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Quality of user experience > Quality of service [1].

Traditional designs:

Infc;';n:ti on processed — waiting to be transmitted and replicated
: > { Sources ' > l Receiver(s) '
bits stored high rate low latency

Now, information is collected and communicated in real-time.

Go beyond classical metrics: connectivity, rate, reliability, bit error, and latency.

Age of Information, h,, quantify the freshness of information 2, 3]

u,: generation time of the latest update, h, = k — u,.

] Banerjee-Ulukus, The freshness game: timely communications in the presence of an adversary, 2023.
] Kaul-Gruteser-Rai-Kenny, Minimizing age of information in vehicular networks, 2011.

Kaul-Yates-Grusteser, On piggybacking in vehicular networks, 2011.



Chapters 2 ~ 4

Problem Formulation

. . Recelver
M identical source nodes

+ Physical process X; ., = X, + A; 4, Ajx ~ /(0,67

e (Collision channel, collision feedback mw

. Minimum mean square error estimator: X , O O O O

» Age of Information for source i: h; source 1 Source 2 eeeee Source M

* Deciding in a decentralized manner.

 Goal: minimize normalized average estimation error (NAEE)

L(M)=min Ilim [E - —X”
( ) 7 K- 1{1\42]§lz1



Chapters 2 ~ 4

Motivations & Literature Review

Sampling: single-user systems [1,2,3,4,5] — Our works: multi-user systems

Reliable vs. Timely Communication: centralized policies [5,7,8,9 — Our works: decentralized
policies

Distributed decision making: no collision feedback 10,11,121 — Our works: collision feedback

* Ad-hoc networks: centralized policies or decentralized stationary randomized policies [13,14] —

© .0 N0~ WN =

Our works: general decentralized policies

Rabi-Moustakides-Baras, Adaptive sampling for linear state estimation, 2012.

Lipsa-Martins, Remote state estimation with communication costs for first-order LTI systems, 2011.

Molin-Hirche, Event-triggered state estimation: an iterative algorithm and optimality properties, 2017.
Nayyar-Basar-Teneketzis-Veeravalli, Communication scheduling and remote estimation with energy harvesting sensor, 2012.
Chakravorty-Mahajan, Remote estimation over a packet-drop channel with Markovian state, 2020.

Talak-Modiano, Age-delay tradeoffs in queueing systems, 2021.

Sun-Polyanskiy-Uysal Biyikoglu, Remote estimation of the Wiener process over a channel with random delay, 2020.
Kadota-Sinha-Modiano, Scheduling algorithms for optimizing age of information in wireless networks with throughput constraints, 2019.
Kadota-Modiano, Minimizing the age of information in wireless networks with stochastic arrivals, 2019.

10] Gatsis-Pajic-Ribeiro-Pappas, Opportunistic control over shared wireless channels, 2015.

] Taricco, Joint channel and data estimation for wireless sensor networks, 2012,

12] Zhang-Vasconcelos-Cui-Mitra, Distributed remote estimation over the collision channel with and without local communication, 2022.
13] Tripathi-Talak-Modiano, Information freshness in multinop wireless networks, 2023.
14] Jones-Modiano, Minimizing age of information in spatially distributed random access wireless networks, 2022.

14



Chapters 2 ~ 4

Oblivious Policies, Non-oblivious Policies, and Age of Information

« ODblivious Policies: actions do not depend on samples (X; ;).

 Non-oblivious Policies: actions depend on samples (X; ;).

. .. . 5 21 T p)
Lemma 1. In oblivious policies, for any node i, [(Xl-’k — X 1) ] = Elh; ;lo~. '

e |n oblivious policies, minimization of estimation error < minimization of Aol

 Minimize normalized average Aol (NAAOoI)

o 1 O




Chapters 2 ~ 4 .

Oblivious Policies and Age of Information J(M) = min lim E[—— > } 7,

K
d o k=1 i=1

« More general setting: generating packets by a Bernoulli process with ¢

e When 6 1s small

e R e — e I I — e E—— e — e — e — e — R I — R I — e — j

Theorem 1. Suppose 0 < 1/eM and define » = lIim M6. Any slotted ALOHA scheme [1]

M— o0

achieves lim J>*(M) = 1/5. — lower bound, optimality |
M— oo )

N e — e e S S S S e e A

 When 60 is large: Select nodes through a thinning process

e age-gain 2 — age reduction when receiving a new packet
* Thinning process: age-gain > T(k) — active, slotted ALOHA

» T(k) — adaptive thinning, T* — stationary thinning

[1] Bertsekas-Gallager, Data Networks, 2nd ed. Hoboken, NJ, USA: Prentice-Hall, 1992.

[2] Kadota-Modiano, Minimizing the age of information in wireless networks with stochastic arrivals, 2021.
9



Chapters 2 ~ 4

. - . . RS P
Oblivious Policies and Age of Information JM) = min lim E[-—— > > hf,

K
rRTe k=1 i=1

e e e — A e e — A N — e — e — e N — e — A e — A e — e —

Emorem 2. For stationary thinning, T* = |eM — 1/0+ 1|. Forany @ = 1/o(M), lim J(M) = e/2.

M— o0

e ————————— R R e — R R — R e — R — R R R A R R — e e R e R —

D %
—o— Slotted ALOHA (with unit buffer size) ) ) )
—— Optimal Stationary Randomized T Optimal Stationary Randomized
8 #| —a— Stationary Thinning with slotted ALOHA —a— Stationary Thinning with slotted ALOHA
—»— Adaptive Thinning with slotted ALOHA | , S 3 i — Adaptive Thinning with slotted ALOHA
—e— Centralized Max-Weight — .ower Bounds
6 1 Lower Bound ' —— Centralized Max-Weight
l 2 L
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Chapters 2 ~ 4

Oblivious Policies and Age of Information JM) = min lim E[-—— > > hf,

K
rRTe k=1 i=1

o Stationary thinning can be applied to other transmission policies.

* Theoretical guarantees & simulations are provided.

e Achievements:

e [C1] X. Chen, K. Gatsis, H. Hassani and S. Saeedi-Bidokhti, Age of Information in Random
Access Channels, IEEE ISIT, 2020.

e [J1] X. Chen, K. Gatsis, H. Hassani and S. Saeedi-Bidokhti, Age of Information in Random
Access Channels, IEEE TIT, 2022.

* |EEE Communications Society & Information Theory Society Joint Paper Award 2023

11



Chapters 2 ~ 4

Non-oblivious Policies o 1 ¥ N
L(M)=m;n 1%1_1)1010 | KMQZZ (X )|

« Error process: yi(k) = | X.(k) — X.(k)| k=1 il

e Error-based Thinning: wi(k) > p# — active, slotted ALOHA.

e Minimize L(M) — find optimal f*

and L ~ ec?/6.
.

—
|Theorem 3. Let M be sufficiently large. The optimal /* is approximately given by p* ~ 6v/eM,

» For oblivious policy, joPlIVIous o, o/ joblivious , ,52/>

e I e — e I I — e E——— e — e R E——— e — e e — e I — e —

Proposition 1. For large M, L.OP!IVIOUS[ ~ 3 J

e —— e — —————————— E— —————————— R — E— — R S R — e — — I E— ———————— —————————— E— S A R ————————— e — —————————— ————————— R
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Chapters 2 ~ 4

Non-oblivious Policies

L(M) =min lIim

—+— Optimal Stationary Randomized Policy

— = Stationary Age-based Thinning
—e— Adaptive Age-based Thinning
—h— Error-based Thinning

- - Oblivious MW Policy
Non-oblivious Greedy Policy

—— Estimated 7?7
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Chapters 2 ~ 4

Non-oblivious Policies o 1 K X .
L(M) = min lim B0 ) Z (Xix

 The framework can be extended to two general settings:

o Extension 1: X, ;.1 = ¥Xix + A Ajg ~ V' (0,6%), 7 > 0.

e Extension 2: unreliable channels, packets are erased with an erasure probability.

e Achievements:

» [C2] X. Chen, X. Liao, and S. Saeedi-Bidokhti, Real-time Sampling and Estimation on Random
Access Channels: Age of Information and Beyond, IEEE INFOCOM, 2021.

* [J2] X. Chen, X. Liao, and S. Saeedi-Bidokhti, Beyond Aol: Real-time Sampling and Estimation
on Reliable and Unreliable Random Access Channels, IEEE/ACM ToN, submitted.

e |EEE INFOCOM Student Conference Award

14



Chapters 2 ~ 4

General Setting in Ad-hoc Networks

1 2
Consider an ad-hoc (connected) network with M sources. O

Physical process: X; .1 = Xix + Ao Mg ~ V(0,6%)

(3 :
Each source can be either a sender or a receiver. O\

Collision channel, collision feedback @

Every source estimates the processes for every other sources.

Source i: estimate X, for source j ()A(]l: k) calculate the Aol of source j (h{ k).

Every source decides (i) when to sample, (i) who to communicate with, and (iii)
what to transmit.

15



Chapters 2 ~ 4

Challenges

 [wo main challenges — Multi-agent Reinforcement Learning
(i) increased dimensions of decision making,
(i) network topologies.

* Goal: minimize the average estimation error,

1 M M |
LM) = min lim 25 BT ), 2, ), (Y= XT

* In oblivious policies,

1 K M M
/M) =min i _[Z Z Z i

16




Chapters 2 ~ 4

Graphical Reinforcement Learning

e (Classical Actor-Critic Framework [1

Action a
K Py oy
Action a
S SaN
Policy Network Value g | yajye Network ’ Reward r m
|  (Actor) (Critic) | -
_ L_____ﬁ______)
State s
I 4 Y
State s

[1] Mnih-Badia-Mirza-Graves-Harley-Lillicrap-Silver-Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning, 2016.
17



Chapters 2 ~ 4

Graphical Reinforcement Learning

o Critic « Graph Neural Networks Action g

e Actor « Graph Recurrent Neural
Networks

e State « Observation

GRNN Value g GNN Reward 7
(Actor) [ Critic) |

o A ~ Fgofimax(HHBH'): # of parametersin B \“————— — g

A

IS Independent of # of sources. Transferability
Observation o Observationo’  State s
A P
Trained Model " 4 Y
G = )
" Small | Large
_graphs | graphs
SRS U

18



Chapters 2 ~ 4

Transferability

® © 00 o0 00

— o000
Graph =, 00O o0 ® o Graphon

® O 00 o000

« Graphon [11: a limit of sequence of convergent graphs. W : [0,1]> — [0,1], bounded,
measurable, and symmetric.

® ® ®
Graph Signal . @ , : Graphon Signal
Xy ‘ @ @ X

e Graphon signal 111: X € L*([0,1])

1
. Output & operator: Y(v) = (T X)(v) = J W(u,v)X(u)du
0

[1] Ruiz-Chamon-Ribeiro, Transferability properties of graph neural networks, 2022.
19



Chapters 2 ~ 4

Transferability

WNN

Graph
Neural Network Graphon
(GNN) Neural Network
(WNN)
Graphon
Signals

WRNN

Graph Recurrent
Neural Network
(GRNN)

Graphon Recurrent
Neural Network

(WRNN)

Graphon

Signals Signals

l Recurrency

l Recurrency




Chapters 2 ~ 4

Transferability in GRNN
e Given (W, X), a (= ,x, ) with dimension n can be induced by (W, X)

« Given(E,,x,), a (WE,; X ) is induced from (& , x, ).

e . e e R R e e - e e e

-\

H(;ssumption 1. The spectral response /(1) of a convolutional filter T}, , is L-Lipschitz in |
t 1, — €] Ule, 1], and £-Lipschitz in (—¢, €) vaith < L. Moreover,‘\ h(T/l) | < 1. |

> et M'mEe R N o
Assumption 2. The activation functions satisfy |p(x) — p(v)| < |x —Vy]|, and p(0) = 0. ]
lTheorem 4. Y = O(X; W) is a WRNN, the convolutional layers of ®(X; W) satisfying |
hAssumptions 1&2.Let (B, x,), (WE,; X,) be defined above, Y, = O(X ; Wz ). Then, :
Y — Y || L0 |[|X||+c||X=-X,||,where ®, - Oasn — oo. |
lRemark:HY—YnHeOasneoo. J

21



Chapters 2 ~ 4

Transferability in Action Distribution

inactive

2>

Enactive

Transmit packets
from source 1 <
to source 2 B

e N S N S

Theorem 5. Let Y = ®(X; W) is a WRNN satisfying Assumptions 1 & 2, then ||A — AHH — 0

* Transferablility «—— graph filters [1]

[1] Ruiz-Chamon-Ribeiro, Transferability properties of graph neural networks, 2022.
22



Average estimation error

VN
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Chapters 2 ~ 4

Simulations

Performances of the-state-of-arts | | Transferability

~&~ Baseline 1: Uniform Transmitting
300 | ~™ Baseline 2: Adaptive Transmitting
~&~ (raphical IPPO

~&~ (raphical MAPPO

250 1

S 2
Average estimation error

200 1

= Baseline 1: Uniform Transmitting

— Baseline 2: Age Adaptive Transmitting 150

Baseline 3.1: RNN+IPPO

= Baseline 3.2: RNN+MAPPO 100 4

=== (raphical IPPO /

=== (raphical MAPPO 0

0 500 1000 1500 2000 2500 3000 . r : : : v
Leamning episodes 0 L 0 &5 X B

Number of sources

Achievements: this work is ready to submit.

23




Chapter 5

e [radeoffs between Aol and communication Userd

User 2

rate In broadcast networks Q Q Q """ O

User 3 User M

L A
 Result 1: Coding is beneficial to the Aol, and I e )
(- : Erasure Broadcast-Networks
the benefits increases with # of users | [
W A B Coding Actions )
» Result 2: Tradeoffs exist — the system hasto |
sacrifice Aol to achieve a higher rate ) € € @ - @
Source 1 Source 2 Source 3 Source M

e Achievements:

» [C3] X. Chen and S. Saeedi-Bidokhti, Benefits of Coding on Age of Information in Broadcast Networks, |[EEE

ITW, 2019.

» [C4] X. Chen, R. Liu, S. Wang, and S. Saeedi-Bidokhti, Timely Broadcasting in Erasure Networks: Age-Rate

Tradeoffs, IEEE ISIT, 2021.

» [J3] X. Chen and S. Saeedi-Bidokhti, Timely Broadcasting Mechanisms in Erasure Networks: Age-Rate

Tradeoffs, IEEE TWC, submitted.

24



Chapter 6

Backgrounds

Timely inference and detection for processes that evolve both temporally and
spatially. COVID-19 in contact networks

How to contain the spread as soon as possible? Sequentially policy.
Testing has a dual role: (i) detect infected nodes, and (ii) learn the spread.
Paradigm |. contact tracing [1,2) — — pure exploitation

Paradigm |l: random testing — — pure exploration

Silent spread: an undetected individual may infect its neighbors

Tradeoffs between exploitation of knowledge and exploration of the unknown.

[1] Kojaku,-Dufresne-Mones-et al, The effectiveness of backward contact tracing in networks, 2021.
[2] Ou-Sinha-Suen-et al. Who and when to screen: Multi-round active screening for network recurrent infectious diseases under uncertainty, 2020.

25



Chapter 6

Motivations & Literature Review

o Estimation & Prediction: SIR and variantsi,2,31 — Our
work: testing and isolation policy.

* Differential Equation Approximations: no

heterogeneity (4,51 — Our work: heterogeneity &
spread

 Comparing to other RL;
 Multi-armed Bandit [6,771 — Our work: time-variant actions
» Active Search [8,9] — Our work: dynamic target

« POMDRP [10] — Our work: general setting

* Novel Exploitation-Exploration Tradeoffs

26

[1] Bastani-Drakopoulos-Gupta-et al., Efficient and
targeted COVID-19 border testing via reinforcement
learning, 2021.

[2] Ramos-Ferrandez-Perez-et al., A simple but

complex enough 6-SIR type model to be used with
COVID-19 real data: application to the case Italy, 2021.
[3] Hu-Geng, Heterogeneity learning for SIRS model: an
application to the COVID-19, 2021.

[4] Tanaka-Kuga-Tanimoto, Pair approximation model
for the vaccination game: predicting the dynamic
process of epidemic spread and individual actions
against contagion, 2021.

[5] Kabir-Tanimoto, Evolutionary vaccination game
approach in metapopulation migration model with
information spreading on different graphs, 2019.

[6] Auer-Bianchi-Fischer, Finite-time Analysis of the
Multiarmed Bandit Problem, 2002.

[7] Agrawal-Goyal, Regret analysis of stochastic and
nonstochastic multi-armed bandit problems, 2012.

[8] Bilgic-Mihalkova-Getoor, Active learning for
networked data, 2010

[9] Wang-Garnett-Schneider, Active search on graphs,
2013.

[10] Singh-Liu-Shroff, A Partially Observable MDP
Approach for Sequential Testing for Infectious Diseases
such as COVID-19, 2020.



Chapter 6

Problem Formulation
o Susceptible (S), Latent (L), Infectious (), and Recovered(R)

. o RN
e [3: transmission rate, A: ill-being rate, y: recovery rate | § 1 L (!
— — —

* An individual tested positive will be isolated immediately.

* A recovered individual can not be infected again.

* Only infectious individuals can infect others.

* B(?): testing budget; F”"(r): the set of tests; C*(T): the cumulative infections

 Goal: minimize the cumulative infections under budget constraints

min - C*(T)]
7| F ()| <B(1),0<t<T—-1

27




Chapter 6

Supermodularity

* S(9;1): the expected number of newly infectious nodes incurred by nodes in & on day .

R I e — R I I — e E—— e — e R S — e — R I — R R — e —

Lemma 2. E[C*(t 4+ 1) — C*(t)] = S(Z ()\F"(1); 1).

|
|

Remark min [CHT)] — min ST ONFED): 1) |
| A ()| <B(t),0<t<T-1 | Z ()| <B(t)

e ————— e — e e e e e S A — e — e e e e e

—— R e e E— e —

lTheorem 6. S(HA"(1); 1) is a supermodular 11and increasing monotone function on % ”*(¢). '

e e R R — R — R e e e e e R e

« By Algorithm A in (11, S(Z(O\F (£); 1) < (1 + €,)OPT,

S(7();1) = S(7 (D\a}; 1) — S(aln); 1)
€, = max
a€7/ (1) S(7(0;0) = S5(7 (HD\a}; 1)

[1] llev, An approximation guarantee of the greedy descent algorithm for minimizing a supermodular set function, 2001.

28



Chapter 6

Exploitation and Exploration

o Reward: r(r) = S({i};1) = the expected number of newly infectious nodes incurred
by node i on day .

S —
Lemma 3. S(Z(O\K™(D); 1) < S(T(0:0) = ), r0). |
| i€ (1) |
' :
Remark min  S(Z(O\F™1):1) — max ) (1)

| (1) <B() 1 WI<BO) J
e EEEEE—————————

» Exploitation: Re-arrange {ry(¢)}; in descending order, and test the first B(r) nodes.
o Exploration: Test node i with probability min{l,B(t)ri(t)/z r(t)}.

« Question: How to estimate {r(r)}.,?

29



Chapter 6

Message-Passing Framework

» u(1): the prior probability vector of the true probabllity vector of node i

- w (7): the posterior probability vector of the true probability vector of node i

P Decisioanaking DecisionL making
(.t — D3] [ oy ] (. + DY ]

[, 62 - 1)}] K; /
/

[ vy, ] (v + )]
[tec = )] [ ey ] [te.c+ )]

30
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Chapter 6

Backward Updating |Is Necessary

e Example 1: Aline network with N nodes. Setf=1,A=0,y=0. - No Land R

states. B(tr) = 1. On the initial day, each node is infected with probability 1/N. No
Isolation policy.

r A R s . e R R . R —— R e e e R e . R —— I - e —— R . _‘-‘::ﬁ

eorem 7. Without the backward updating, for any testing policy that sequentially

|
lcomputes { u (1)}, with probability 1/e, Z [y —u@®]|| > OWN)ast — oo for large N. With:

the backward updating, there exists a policy, such that Z [|v(O) —u()|| =0forz > 2N. J

e e e — R . e — R e .

31



Chapter 6

Exploration Is Necessary

o Example 2: A line network with N nodes. Setf=1,A=0,y=0. - No Land R
states. B(¢r) = 10. Node 1 is infected. A slightly wrong initial estimate.

1 2 3 4 eeo e N

* A specific exploration: 1 (out of 10) test is done randomly, and the other 9 tests
are done following exploitation.

e e e . e e R . e R e e e R e . e I . A ——— N . I:ﬁ

| CEproitation i
Theorem 8. With probability p, > 99/100, on day T, ~Exploration > c(N, py), Where c(N, py) is

a constant depending on N and p,, and c(/V, p,) can be arbitrarily large. l

32
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Chapter 6

Cumulative Infections

Watts—Strogatz Real-data Network
300 . 9atz 250 | |
250 s
200 .
7))
c
|200 / | .9
©
o 150 —No tests |
c — Contact tracing
150 3 Active Case Finding
> Random Testing
_______ "&;' 100 : Exp.I0|'tat|on | |
_______ S Logistic Regression
100~ [// _~==--"""" = — Exploration
— No tests -]
— Contact tracing O
— Logistic Regression 50 -
50 Active Case Finding
Random Testing
— Exploitatioin
— — Algorithm A
0 — Exploration 0 | |
100 150 0 50 100 150

Day
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Chapter 6

Simulations

o Unregulated delay: initial start — the first time intervention start
o Clustering coefficient: nodes in a graph tend to cluster together
o Shortest path-length: the average shortest distance between every pairs

 Conclusion: When the above parameters increase, exploration becomes more
beneficial as it provides better estimates of nodes’ probabilities of infection.

e Relationship to previous chapters: (1) Temporal processes — Temporal and
spatial processes; (2) Timeliness of nodes — Timeliness of networks

e Achievements:

» [J4] X. Chen, H. Nikpey, J. Kim, S. Sarkar, and S. Saeedi-Bidokhti, Containing a spread through sequential
learning: to exploit or to explore? TMLR, 2023.
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