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We design for the first time decentralized age-based transmission policies
Provide analytical results on the age of information
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System Model

2 Sensor I
M statistically 1dentical source nodes - K&'\\ arrival rate 6
Slotted time B )
Stochastic arrival/generation process 6
Q&L'% (. )

Collision channel, collision feedback

One unit transmission delay

Find transmission policy T that minimizes Normalized Expected Weighted Sum

Aol (NEWSAoI) liIm —— h(k
O( O)K—>oo Mlzll; ()



Evolution of Age

wi(k) + 1 no new packet arrives
Source Aol wik+1) = ,
0 a new packet arrives

wi(k) + 1 a packet is delivered

Destination Aol h.(k+ 1) =
estination Aol /1 ) {hi(k) + 1 no packet 1s delivered
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Lower Bound

Theorem: For any transmission policy, NEWSAoI 1s lowered bounded by

1
1) NEWSAol > — small arrival rates
®
2) NEWSAol > +— large arrival rates
2Cpy 2M

where Cp 4 denote the sum-capacity of the underlying random access channel

e RA with feedback Cp, < 0.568 (M — o0)
[Tasybakov-Likhanov] Probl. Peredachi Inf, vol. 23

e RA with CSMA Cp, < 1

1
o RA without feedback Cpy < — (M — o)
e
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Small arrival rate: slotted ALOHA

Slotted ALOHA: transmitters send packets immediately upon arrival
they are “backlogged” after a collision
a backoff probability

1
Theorem: Suppose ¢/ < —— and define 7 = lim M6. Any stabilized slotted

eM M— oo
ALOHA scheme achieves
1
Iim NEWSAol(M) = —.
M- o0 n

Moreover, (stabilized) slotted ALOHA are asymptotically optimal in terms of
NEWSAOoI.
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Decentralized Age-based Policies

Large arrival rate: Age-based Thinning

1
When the arrival rate 8 = —M, then NEWSAOoI of slotted ALOHA 1is around e.
e

1
Is the slotted ALOHA unstabilized (large Aol) when 6 > —M?
e

Can we get benefits (small Aol) by increasing arrival rate?

What should the transmitters do in order to ensure a small age of information

1
when 0 > —?
eM
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Decentralized Age-based Policies

Large arrival rate: Age-based Thinning

We defined age-gain as: 6,(k) = h(k) — w;(k)

Icwc)

k
Decentralized age-based policies: transmitter i send packets when it has large 6,(k).

active o:(k) > T(k)

Adaptive threshold policy: node i:
APLVE LMTESHOIE POlEY. NOCE ! {inactive 0 < oi(k) < T(k)

active O;(k) > T*

Stati threshold policy: node i:
atonary thteshold policy. node f {inactive 0<6(k) <T*

Active nodes follow slotted ALOHA protocol and inactive nodes remain silent
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Decentralized Age-based Policies

Adaptive Age-based Thinning

node [ 1s m-order at time k if 6,(k) = m o {active 5:(k) > T(k)
noac i.

. . inacti )
expected fraction of nodes with order m: 2, (k); inactive 0 < o/k) < T(k)

estimate: £ (k)

(2, (N},
{ L}m(k _ 1)}00'—> Estimate > Estimate ——

m=0 Expected age-gain k) e_,
_ distribution after packet 4
Expected fraction of arrival T(k) c(k)
nodes that have just N o Collision feedback
become m-order 14, (k) }m=0

v

Find Threshold

T(h) = max{z|n§am(k) zeiM}
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1
Theorem: For any 8 = 1/o(M), Iim NEWSAoI(M) = e

M- 0
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Numerical Results

Throughput/rate T

Probabilities

Age of Information l
—— Prob. of successful transmission
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