Age of Information in Random Access Channels

2020 IEEE ISIT, Los Angeles, California, USA

Xingran Chen Konstantinos Gatsis Hamed Hassani Shirin Saeedi Bidokhti

University of Pennsylvania

• Communication networks have witnessed rapid growth in the past few decades cyber-physical systems, the Internet of Things, smart cities, healthcare systems

- Communication networks have witnessed rapid growth in the past few decades cyber-physical systems, the Internet of Things, smart cities, healthcare systems
- Reliable and high speed Time-sensitive remote sensing, estimation, control

- Communication networks have witnessed rapid growth in the past few decades cyber-physical systems, the Internet of Things, smart cities, healthcare systems
- Reliable and high speed Time-sensitive remote sensing, estimation, control
- Transmission policies keeping freshest information Age of Information markovity of the underlying physical processes

- Communication networks have witnessed rapid growth in the past few decades cyber-physical systems, the Internet of Things, smart cities, healthcare systems
- Reliable and high speed Time-sensitive remote sensing, estimation, control
- Transmission policies keeping freshest information Age of Information markovity of the underlying physical processes [Kadota-Sinha-Biyikoglu-Singh-Modiano-18], [Kadota-Sinha-Modiano-19], [Hsu-Modiano-Duan-19], [Kadota-Modiano-20], [Kaul-Yates-17], [Talak-Karanman-Modiano-18], [Kosta-Pappas-Ephremides-Angelakis-19], [Jiang-Krishnamachari-Zheng-Zhou-Niu-18] [Jiang-Krishnamachari-Zhou-Niu-18], [Yates-Kaul-20]

- Communication networks have witnessed rapid growth in the past few decades cyber-physical systems, the Internet of Things, smart cities, healthcare systems
- Reliable and high speed Time-sensitive remote sensing, estimation, control
- Transmission policies keeping freshest information Age of Information markovity of the underlying physical processes [Kadota-Sinha-Biyikoglu-Singh-Modiano-18], [Kadota-Sinha-Modiano-19], [Hsu-Modiano-Duan-19], [Kadota-Modiano-20], [Kaul-Yates-17], [Talak-Karanman-Modiano-18], [Kosta-Pappas-Ephremides-Angelakis-19], [Jiang-Krishnamachari-Zheng-Zhou-Niu-18] [Jiang-Krishnamachari-Zhou-Niu-18], [Yates-Kaul-20]
- We design for the first time decentralized age-based transmission policies
- Provide analytical results on the age of information

• A new metric to quantify the freshness of information (2011) [Kaul-Yates-Gruteser 11]

- A new metric to quantify the freshness of information (2011) [Kaul-Yates-Gruteser 11]
- u(t): timestamp of the most recently received update; h(t) = t u(t).

- A new metric to quantify the freshness of information (2011) [Kaul-Yates-Gruteser 11]
- u(t): timestamp of the most recently received update; h(t) = t u(t).
- t'_k : the receiving time of k^{th} status update
- t_k : the generation time of k^{th} status update

- A new metric to quantify the freshness of information (2011) [Kaul-Yates-Gruteser 11]
- u(t): timestamp of the most recently received update; h(t) = t u(t).
- t'_k : the receiving time of k^{th} status update
- t_k : the generation time of k^{th} status update

- A new metric to quantify the freshness of information (2011) [Kaul-Yates-Gruteser 11]
- u(t): timestamp of the most recently received update; h(t) = t u(t).
- t'_k : the receiving time of k^{th} status update
- t_k : the generation time of k^{th} status update

• Time average age:
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T h(t)$$

• *M* statistically identical source nodes

- *M* statistically identical source nodes
- Slotted time

- *M* statistically identical source nodes
- Slotted time
- Stochastic arrival/generation process θ

- *M* statistically identical source nodes
- Slotted time
- Stochastic arrival/generation process θ
- Collision channel, collision feedback

- *M* statistically identical source nodes
- Slotted time
- Stochastic arrival/generation process θ
- Collision channel, collision feedback
- One unit transmission delay

- *M* statistically identical source nodes
- Slotted time
- Stochastic arrival/generation process θ
- Collision channel, collision feedback
- One unit transmission delay
- Find transmission policy π that minimizes Normalized Expected Weighted Sum AoI (NEWSAOI) $\lim_{K \to \infty} \frac{1}{KM^2} \sum_{i=1}^{M} \sum_{k=1}^{K} h_i^{\pi}(k)$

Evolution of Age

Source AoI

$$w_i(k+1) = \begin{cases} w_i(k) + 1\\ 0 \end{cases}$$

no new packet arrives a new packet arrives

Destination AoI
$$h_i(k+1) = \begin{cases} w_i(k) + 1 & \text{a packet is delivered} \\ h_i(k) + 1 & \text{no packet is delivered} \end{cases}$$

Lower Bound

Lower Bound

- RA with feedback $C_{RA} \leq 0.568 \quad (M \to \infty)$ [Tasybakov-Likhanov] *Probl. Peredachi Inf*, vol. 23
- RA with CSMA $C_{RA} \leq 1$

• RA without feedback
$$C_{RA} \leq \frac{1}{e} \quad (M \to \infty)$$

Small arrival rate: slotted ALOHA

Slotted ALOHA: transmitters send packets immediately upon arrival they are "backlogged" after a collision a backoff probability

Small arrival rate: slotted ALOHA

Slotted ALOHA: transmitters send packets immediately upon arrival they are "backlogged" after a collision a backoff probability

Theorem: Suppose $\theta \leq \frac{1}{eM}$ and define $\eta = \lim_{M \to \infty} M\theta$. Any stabilized slotted ALOHA scheme achieves $\lim_{M \to \infty} \text{NEWSAoI}(M) = \frac{1}{\eta}.$

Moreover, (stabilized) slotted ALOHA are asymptotically optimal in terms of NEWSAoI.

Large arrival rate: Age-based Thinning

• When the arrival rate $\theta = \frac{1}{eM}$, then NEWSAoI of slotted ALOHA is around *e*.

Large arrival rate: Age-based Thinning

• When the arrival rate $\theta = \frac{1}{eM}$, then NEWSAoI of slotted ALOHA is around *e*.

• Is the slotted ALOHA unstabilized (large AoI) when $\theta > \frac{1}{eM}$?

Large arrival rate: Age-based Thinning

• When the arrival rate $\theta = \frac{1}{eM}$, then NEWSAoI of slotted ALOHA is around *e*.

- Is the slotted ALOHA unstabilized (large AoI) when $\theta > \frac{1}{eM}$?
- Can we get benefits (small AoI) by increasing arrival rate?

Large arrival rate: Age-based Thinning

• When the arrival rate $\theta = \frac{1}{eM}$, then NEWSAoI of slotted ALOHA is around *e*.

- Is the slotted ALOHA unstabilized (large AoI) when $\theta > \frac{1}{eM}$?
- Can we get benefits (small AoI) by increasing arrival rate?
- What should the transmitters do in order to ensure a small age of information when $\theta > \frac{1}{eM}$?

Large arrival rate: Age-based Thinning

• We defined age-gain as: $\delta_i(k) = h_i(k) - w_i(k)$

Large arrival rate: Age-based Thinning

• We defined age-gain as: $\delta_i(k) = h_i(k) - w_i(k)$

• Decentralized age-based policies: transmitter *i* send packets when it has large $\delta_i(k)$.

Large arrival rate: Age-based Thinning

• We defined age-gain as: $\delta_i(k) = h_i(k) - w_i(k)$

- Decentralized age-based policies: transmitter *i* send packets when it has large $\delta_i(k)$.
- Adaptive threshold policy: node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$ • Stationary threshold policy: node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T^* \\ \text{inactive} & 0 \le \delta_i(k) < T^* \end{cases}$

Large arrival rate: Age-based Thinning

• We defined age-gain as: $\delta_i(k) = h_i(k) - w_i(k)$

- Decentralized age-based policies: transmitter *i* send packets when it has large $\delta_i(k)$.
- Adaptive threshold policy: node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$ • Stationary threshold policy: node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T^* \\ \text{inactive} & 0 \le \delta_i(k) < T^* \end{cases}$
- Active nodes follow slotted ALOHA protocol and inactive nodes remain silent

Adaptive Age-based Thinning

node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$

Adaptive Age-based Thinning

node *i* is m-order at time *k* if $\delta_i(k) = m$

node *i*:
$$\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$$

Adaptive Age-based Thinning

node *i* is m-order at time *k* if $\delta_i(k) = m$ expected fraction of nodes with order *m*: $\ell_m(k)$; node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$

Adaptive Age-based Thinning

node *i* is m-order at time *k* if $\delta_i(k) = m$ expected fraction of nodes with order *m*: $\ell_m(k)$; node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$

estimate: $\hat{\ell}_m(k)$

Adaptive Age-based Thinning

node *i* is m-order at time *k* if $\delta_i(k) = m$ expected fraction of nodes with order *m*: $\ell_m(k)$; node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T(k) \\ \text{inactive} & 0 \le \delta_i(k) < T(k) \end{cases}$

estimate: $\hat{\ell}_m(k)$

node *i*:
$$\begin{cases} \text{active} & \delta_i(k) \ge \mathsf{T}^* \\ \text{inactive} & 0 \le \delta_i(k) < \mathsf{T}^* \end{cases}$$

- By the stationarity of the scheme, the limit of $\{\ell_m(k)\}_{m=0}^{\infty}$ and $\{\ell_m(k^+)\}_{m=0}^{\infty}$ exists.
- Denote by $\{\ell_m^*\}_{m=0}^{\infty}$ and $\{\ell_m^{*+}\}_{m=0}^{\infty}$.

node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge \mathsf{T}^* \\ \text{inactive} & 0 \le \delta_i(k) < \mathsf{T}^* \end{cases}$

- By the stationarity of the scheme, the limit of $\{\ell_m(k)\}_{m=0}^{\infty}$ and $\{\ell_m(k^+)\}_{m=0}^{\infty}$ exists.
- Denote by $\{\ell_m^*\}_{m=0}^{\infty}$ and $\{\ell_m^{*+}\}_{m=0}^{\infty}$.

node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge \mathsf{T}^* \\ \text{inactive} & 0 \le \delta_i(k) < \mathsf{T}^* \end{cases}$

Theorem: $T^* = \max(1, \lfloor eM - 1/\theta + 1 \rfloor)$

Theorem: For any $\theta = 1/o(M)$, lim NEWSAoI(M) = e/2. $M \rightarrow \infty$

- By the stationarity of the scheme, the limit of ${\mathscr{C}_m(k)}_{m=0}^{\infty}$ and ${\mathscr{C}_m(k^+)}_{m=0}^{\infty}$ exists.
- Denote by $\{\ell_m^*\}_{m=0}^{\infty}$ and $\{\ell_m^{*+}\}_{m=0}^{\infty}$.

node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge \mathsf{T}^* \\ \text{inactive} & 0 \le \delta_i(k) < \mathsf{T}^* \end{cases}$

Theorem: $T^* = \max(1, \lfloor eM - 1/\theta + 1 \rfloor)$

Theorem: For any $\theta = 1/o(M)$, lim NEWSAoI(M) = e/2. $M \rightarrow \infty$

• A stationary transmission policy π that does not employ coding across packets.

• By the stationarity of the scheme, the limit of $\{\ell_m(k)\}_{m=0}^{\infty}$ and $\{\ell_m(k^+)\}_{m=0}^{\infty}$ exists. • Denote by $\{\ell_m^*\}_{m=0}^{\infty}$ and $\{\ell_m^{*+}\}_{m=0}^{\infty}$. Theorem: $T^* = \max(1, \lfloor eM - 1/\theta + 1 \rfloor)$ Theorem: For any $\theta = 1/o(M)$, lim NEWSAoI(M) = e/2.

 $M \rightarrow \infty$

- A stationary transmission policy π that does not employ coding across packets.
- Develop a variant of the transmission policy π with buffer size 1. Channel capacity C.

- By the stationarity of the scheme, the limit of $\{\ell_m(k)\}_{m=0}^{\infty}$ and $\{\ell_m(k^+)\}_{m=0}^{\infty}$ exists.
- Denote by $\{\ell_m^*\}_{m=0}^{\infty}$ and $\{\ell_m^{*+}\}_{m=0}^{\infty}$.

ists. node *i*: $\begin{cases} \text{active} & \delta_i(k) \ge T^* \\ \text{inactive} & 0 \le \delta_i(k) < T^* \\ = 0^{\circ} \end{cases}$

Theorem: $T^* = \max(1, \lfloor eM - 1/\theta + 1 \rfloor)$

Theorem: For any $\theta = 1/o(M)$, $\lim_{M \to \infty} \text{NEWSAoI}(M) = e/2$.

- A stationary transmission policy π that does not employ coding across packets.
- Develop a variant of the transmission policy π with buffer size 1. Channel capacity C.

Theorem: $T^* = \max(1, \lfloor M/C - 1/\theta + 1 \rfloor)$

Theorem: For any $\theta = 1/o(M)$, $\lim_{M \to \infty} \text{NEWSAoI}(M) = \frac{1}{2C}$.

NEWSAoI

-O Centralized Max-Weight in [Kadota-Modiano-19]

Thank you!