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Background & Motivation

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.

In applications of remote estimation and control, physical processes are observed at decentralized sensors that 
communicate wirelessly with a fusion center. 

Remote and timely estimation.

 - Remote estimation: various point-to-point scenarios
   [O. Imer-T. Basar-2010], [M. Rabi-G. V. Moustakides-J. S. Baras-2012], [G. Lipsa-N. Martins-2011], [A. Molin-S. Hirche-2017]
   [A. Nayyar-T. Basar-D. Teneketzis-V. V. Veeravalli-2012], [J. Chakravorty-A. Mahajan-2020], [X. Gao-E. Akyol-T. Basar-2018]

 - Reliable v.s. Timely Communication: the rate and/or reliability   timeliness (Age of Information) 
   [K. Huang-W. Liu-Y. Li-B. Vucetic-2019], [S. Kaul-M. Gruteser-V. Rai-J. Kenny-2011], [R. Talak-E. Modiano-2019],
    [H. Sac-T. Bacinoglu-E. Uysal-Biyikoglu-G. Durisi-2018], [X. Chen-S. Saeedi-Bidokhti-2019], [X. Chen-K. Gatsis-H. Hassani-S. Saeedi-Bidokhti-2019]
    [Y. Sun-Y. Polyanskiy-E. Uysal-Biyikoglu-2020],

Decentralized sampling and remote estimation over a wireless collision channel

 - Distributed decision making: each sensor decides when to sample and transmit information based only on its local observation
   [K. Gatsis-A. Ribeiro-G. Pappas-2015], [K. Gatsis-M. Pajic-A. Ribeiro-G. Pappas-2015], [G. Taricco-2012]
    [X. Zhang-M. M. Vasconcelos-W. Cui-U. Mitra-2020]
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System Model

 statistically identical sensors and a fusion centerM

Slotted time

Each sensor  observes , i Xi(k + 1) = Xi(k) + Wi(k) Wi(k) ∼ 𝒩(0,σ2)

Collision channel, collision feedback, one time unit transmission delay

Buffer size  (Markovity Property). Node  estimates  by 1 i Xi(k) X̂i(k)

Lπ(M) = lim
K→∞

𝔼[Lπ
K(M)] Lπ

K(M) =
1

M2

M

∑
i=1

1
K

K

∑
k=1

(Xi(k) − X̂i(k))2

Minimum mean square error (MMSE): X̂i(k) = 𝔼[Xi(k) |{Xi(k(i)
t )}l−1

t=0] = Xi(k(i)
l−1)

Oblivious policies and non-oblivious policies

Sensor

Fusion Center
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Oblivious Policies and Age of Information
Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11] 

: timestamp of the most recently received update;  
: the receiving time of  status update 
: the generation time of  status update 

Time average age: 

u(t) h(t) = t − u(t)
t′ k kth

tk kth

lim
T→∞

1
T ∫

T

0
h(t)

Lemma 1: In oblivious policies, the expected estimation error associated with process  has the following 
relationship with the expected age function: .

i
𝔼[(Xi(k) − X̂i(k))2] = 𝔼[hi(k)]σ2

Based on Lemma 1, ,   .Lπ(M) = σ2Jπ(M) Jπ(M) = lim
K→∞

1
M2

M

∑
i=1

1
K

K

∑
k=1

𝔼[hπ
i (k)]

 is the normalized expected sum of age of information,  
which was investigated in our prior work [X. Chen - K. Gatsis - H. Hassani - S. Saeedi Bidokhti-2019]
Jπ(M)
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Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20], 

,      lim
M→∞

JSAT(M) =
e
2

lim
M→∞

LSAT(M) =
e
2

σ2

Centralized policy: at the beginning of each slot , the Max-Weight policy chooses the action   
such that .

k i*
hi*(k) = max

i
hi(k)

Under the Max-Weight policy, , which implies lim
M→∞

LMW(M) =
σ2

2
lim

M→∞

LSAT(M)
LMW(M)

= e
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Non-oblivious Policies
Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process ψi(k) = |Xi(k) − X̂i(k) |

The action of each node:  

Node  becomes active if  has crossed a pre-determined threshold . 

It remains active until a packet is delivered. 
All nodes transmit stochastically following Rivest’s stabilized slotted ALOHA

i ψi(k) β

Error-based Thinning (EbT); Find an optimal threshold β
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Definition 3: Define  as the silence delay.  
Define  as transmission delay. .

J(i)
l = k0 − k(i)

l−1
U(i)

l = k(i)
l − k0 + 1 I(i)

l = J(i)
l − 1 + U(i)

l

Preliminaries: 

Consider an inter-delivery interval (for node ): ;  

For any time slot , ,  

Let , then .

i (k(i)
l−1, k(i)

l ] I(i)
l = k(i)

l − k(i)
l−1

k k(i)
l−1 < k ≤ k(i)

l ψi(k) = |Xi(k) − X̂i(k) | = |
k−1

∑
j=k(i)

l−1

Wi( j) |

Sn =
n

∑
j=1

Wj ψi(k) = |
k−1

∑
j=k(i)

l−1

Wi( j) | ∼ |Shi(k) |
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Non-oblivious Policies

The estimate of  is .LEbT(M) L̂EbT(M) =
1
5

𝔼[J2
β] + 𝔼[U2

β]

2M𝔼[Iβ]
σ2

Theorem 1: Let  be sufficient large. An optimal  is approximately given by , 
and .

M β* β* = σ eM
L̂EbT(M) =

e
6

σ2

. The normalized estimation error of the SAT is around three times that of the EbT policy.lim
M→∞

LSAT(M)
L̂EbT(M)

= 3

Estimation Error Analysis: the approximation error in  increases linearly with .LEbT(M) σ2
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