Real-time Sampling and Estimation on Random Access Channels: Age of Information and Beyond

2021 IEEE INFOCOM

Xinyu Liao

Shirin Saeedi Bidokhti

University of Pennsylvania

Xingran Chen

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.

In applications of remote estimation and control, physical processes are observed at decentralized sensors that communicate wirelessly with a fusion center.

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.

In applications of remote estimation and control, physical processes are observed at decentralized sensors that communicate wirelessly with a fusion center.

Remote and timely estimation.

- Remote estimation: various point-to-point scenarios [O. Imer-T. Basar-2010], [M. Rabi-G. V. Moustakides-J. S. Baras-2012], [G. Lipsa-N. Martins-2011], [A. Molin-S. Hirche-2017] [A. Nayyar-T. Basar-D. Teneketzis-V. V. Veeravalli-2012], [J. Chakravorty-A. Mahajan-2020], [X. Gao-E. Akyol-T. Basar-2018]
- Reliable v.s. Timely Communication: the rate and/or reliability itimeliness (Age of Information) [K. Huang-W. Liu-Y. Li-B. Vucetic-2019], [S. Kaul-M. Gruteser-V. Rai-J. Kenny-2011], [R. Talak-E. Modiano-2019], [Y. Sun-Y. Polyanskiy-E. Uysal-Biyikoglu-2020],

[H. Sac-T. Bacinoglu-E. Uysal-Biyikoglu-G. Durisi-2018], [X. Chen-S. Saeedi-Bidokhti-2019], [X. Chen-K. Gatsis-H. Hassani-S. Saeedi-Bidokhti-2019]

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network. In applications of remote estimation and control, physical processes are observed at decentralized sensors that

communicate wirelessly with a fusion center.

Remote and timely estimation.

- Remote estimation: various point-to-point scenarios [O. Imer-T. Basar-2010], [M. Rabi-G. V. Moustakides-J. S. Baras-2012], [G. Lipsa-N. Martins-2011], [A. Molin-S. Hirche-2017] [A. Nayyar-T. Basar-D. Teneketzis-V. V. Veeravalli-2012], [J. Chakravorty-A. Mahajan-2020], [X. Gao-E. Akyol-T. Basar-2018]
- Reliable v.s. Timely Communication: the rate and/or reliability timeliness (Age of Information) [K. Huang-W. Liu-Y. Li-B. Vucetic-2019], [S. Kaul-M. Gruteser-V. Rai-J. Kenny-2011], [R. Talak-E. Modiano-2019], [Y. Sun-Y. Polyanskiy-E. Uysal-Biyikoglu-2020],

Decentralized sampling and remote estimation over a wireless collision channel

- Distributed decision making: each sensor decides when to sample and transmit information based only on its local observation [K. Gatsis-A. Ribeiro-G. Pappas-2015], [K. Gatsis-M. Pajic-A. Ribeiro-G. Pappas-2015], [G. Taricco-2012] [X. Zhang-M. M. Vasconcelos-W. Cui-U. Mitra-2020]

[H. Sac-T. Bacinoglu-E. Uysal-Biyikoglu-G. Durisi-2018], [X. Chen-S. Saeedi-Bidokhti-2019], [X. Chen-K. Gatsis-H. Hassani-S. Saeedi-Bidokhti-2019]

System Model Fusion Center M statistically identical sensors and a fusion center Sensor

System Model Fusion Center Sensor

M statistically identical sensors and a fusion center Slotted time

Each sensor *i* observes $X_i(k+1) = X_i(k) + W_i(k), W_i(k) \sim \mathcal{N}(0,\sigma^2)$

System Model

Each sensor *i* observes $X_i(k+1) = X_i(k) + W_i(k), W_i(k) \sim \mathcal{N}(0,\sigma^2)$

Collision channel, collision feedback, one time unit transmission delay

Each sensor *i* observes $X_i(k + 1) = X_i(k) + W_i(k)$,

Collision channel, collision feedback, one time unit transmission delay

Buffer size 1 (Markovity Property). Node *i* estimates $X_i(k)$ by $\hat{X}_i(k)$

$$W_i(k) \sim \mathcal{N}(0,\sigma^2)$$

Each sensor *i* observes $X_i(k + 1) = X_i(k) + W_i(k)$, Collision channel, collision feedback, one time unit transmission delay Buffer size 1 (Markovity Property). Node *i* estimates $X_i(k)$ by $\hat{X}_i(k)$ $L^{\pi}(M) = \lim_{K \to \infty} \mathbb{E}[L_{K}^{\pi}(M)] \quad L_{K}^{\pi}(M) = \frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K} \left(X_{i}(k) - \hat{X}_{i}(k)\right)^{2}$

$$W_i(k) \sim \mathcal{N}(0,\sigma^2)$$

Each sensor *i* observes $X_i(k + 1) = X_i(k) + W_i(k)$, Collision channel, collision feedback, one time unit transmission delay Buffer size 1 (Markovity Property). Node *i* estimates $X_i(k)$ by $\hat{X}_i(k)$ $L^{\pi}(M) = \lim_{K \to \infty} \mathbb{E}[L_{K}^{\pi}(M)] \quad L_{K}^{\pi}(M) = \frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{i=1}^{K} \left(X_{i}(k) - \hat{X}_{i}(k)\right)^{2}$ Minimum mean square error (MMSE): $\hat{X}_{i}(k) = \mathbb{E}\left[X_{i}(k) \mid \{X_{i}(k_{t}^{(i)})\}_{t=0}^{l-1}\right] = X_{i}(k_{l-1}^{(i)})$

$$W_i(k) \sim \mathcal{N}(0,\sigma^2)$$

Each sensor *i* observes $X_i(k + 1) = X_i(k) + W_i(k)$, Collision channel, collision feedback, one time unit transmission delay Buffer size 1 (Markovity Property). Node *i* estimates $X_i(k)$ by $\hat{X}_i(k)$ $L^{\pi}(M) = \lim_{K \to \infty} \mathbb{E}[L_{K}^{\pi}(M)] \quad L_{K}^{\pi}(M) = \frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{i=1}^{K} \left(X_{i}(k) - \hat{X}_{i}(k)\right)^{2}$ Minimum mean square error (MMSE): $\hat{X}_{i}(k) = \mathbb{E}\left[X_{i}(k) \mid \{X_{i}(k_{t}^{(i)})\}_{t=0}^{l-1}\right] = X_{i}(k_{l-1}^{(i)})$

Oblivious policies and non-oblivious policies

$$W_i(k) \sim \mathcal{N}(0,\sigma^2)$$

Oblivious policies: independent of processes they observe, less costly to implement

- Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11]

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11] u(t): timestamp of the most recently received update; h(t) = t - u(t) t'_k : the receiving time of k^{th} status update t_k : the generation time of k^{th} status update Time average age: $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11] u(t): timestamp of the most recently received update; h(t) = t - u(t) t'_k : the receiving time of k^{th} status update t_k : the generation time of k^{th} status update Time average age: $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Lemma 1: In oblivious policies, the expected estimation error associated with process *i* has the following relationship with the expected age function: $\mathbb{E}\left[\left(X_i(k) - \hat{X}_i(k)\right)^2\right] = \mathbb{E}[h_i(k)]\sigma^2$.

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11] u(t): timestamp of the most recently received update; h(t) = t - u(t) t'_k : the receiving time of k^{th} status update t_k : the generation time of k^{th} status update Time average age: $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Lemma 1: In oblivious policies, the expected estimation error associated with process *i* has the following relationship with the expected age function: $\mathbb{E}\left[\left(X_i(k) - \hat{X}_i(k)\right)^2\right] = \mathbb{E}[h_i(k)]\sigma^2$.

Based on Lemma 1, $L^{\pi}(M) = \sigma^2 J^{\pi}(M)$, $J^{\pi}(M) = \lim_{K \to \infty} \frac{1}{M}$ $K \rightarrow \infty I$

 $J^{\pi}(M)$ is the normalized expected sum of age of information, which was investigated in our prior work [X. Chen - K. Gatsis - H. Hassani - S. Saeedi Bidokhti-2019]

$$\frac{1}{M^2} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[h_i^{\pi}(k)].$$

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20], $\lim_{M \to \infty} J^{SAT}(M) = \frac{e}{2}, \quad \lim_{M \to \infty} L^{SAT}(M) = \frac{e}{2}\sigma^2$

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20], $\lim_{M \to \infty} J^{SAT}(M) = \frac{e}{2}, \quad \lim_{M \to \infty} L^{SAT}(M) = \frac{e}{2}\sigma^2$

Centralized policy: at the beginning of each slot k, the Max-Weight policy chooses the action i^* such that $h_{i^*}(k) = \max_i h_i(k)$.

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20], $\lim_{M \to \infty} J^{SAT}(M) = \frac{e}{2}, \quad \lim_{M \to \infty} L^{SAT}(M) = \frac{e}{2}\sigma^2$

Centralized policy: at the beginning of each slot k, the Max-Weight policy chooses the action i^* such that $h_{i^*}(k) = \max_i h_i(k)$.

Under the Max-Weight policy, $\lim_{M \to \infty} L^{MW}(M) = \frac{\sigma^2}{2}$, which

implies
$$\lim_{M \to \infty} \frac{L^{SAT}(M)}{L^{MW}(M)} = e$$

Non-oblivious policies: nodes can observe processes for decision making

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_i(k) = |X_i(k) - \hat{X}_i(k)|$

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_i(k) = |X_i(k) - \hat{X}_i(k)|$

The action of each node:

Node *i* becomes active if $\psi_i(k)$ has crossed a pre-determined threshold β .

It remains active until a packet is delivered.

All nodes transmit stochastically following Rivest's stabilized slotted ALOHA

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_i(k) = |X_i(k) - \hat{X}_i(k)|$

The action of each node:

Node *i* becomes active if $\psi_i(k)$ has crossed a pre-determined threshold β . It remains active until a packet is delivered.

All nodes transmit stochastically following Rivest's stabilized slotted ALOHA

Error-based Thinning (EbT); Find an optimal threshold β

Consider an inter-delivery interval (for node *i*): $(k_{l-1}^{(i)}, k_l^{(i)}]; I_l^{(i)}$

$$= k_l^{(i)} - k_{l-1}^{(i)}$$

Consider an inter-delivery interval (for node *i*): $(k_{l-1}^{(i)}, k_l^{(i)}]$; $I_l^{(i)} = k_l^{(i)} - k_{l-1}^{(i)}$

For any time slot k, $k_{l-1}^{(i)} < k \le k_l^{(i)}$, $\psi_i(k) = |X_i(k) - \hat{X}_i(k)| = |\sum_{j=k_{l-1}^{(i)}}^{k-1} W_i(j)|$

Consider an inter-delivery interval (for node *i*): $(k_{l-1}^{(i)}, k_l^{(i)}]$; $I_l^{(i)} = k_l^{(i)} - k_{l-1}^{(i)}$

For any time slot k, $k_{l-1}^{(i)} < k \le k_l^{(i)}$, $\psi_i(k) = |X_i(k) - \hat{X}_i(k)| = |\sum_{j=k_{l-1}^{(i)}}^{k-1} W_i(j)|$

Let
$$S_n = \sum_{j=1}^n W_j$$
, then $\psi_i(k) = |\sum_{j=k_{l-1}^{(i)}}^{k-1} W_i(j)| \sim |S_{h_i(k)}|$.

Consider an inter-delivery interval (for node *i*): $(k_{l-1}^{(i)}, k_l^{(i)}]$; $I_l^{(i)} = k_l^{(i)} - k_{l-1}^{(i)}$

For any time slot $k, k_{l-1}^{(i)} < k \le k_l^{(i)}, \psi_i(k) = |X_i(k) - \hat{X}_i(k)| = |\sum_{k=1}^{k-1} W_i(j)|$

Let
$$S_n = \sum_{j=1}^n W_j$$
, then $\psi_i(k) = |\sum_{j=k_{l-1}^{(i)}}^{k-1} W_i(j)| \sim |S_{h_i(k)}|$.

Definition 3: Define $J_l^{(i)} = k_0 - k_{l-1}^{(i)}$ as the silence delay. Define $U_l^{(i)} = k_l^{(i)} - k_0 + 1$ as transmission delay. $I_l^{(i)} = J_l^{(i)} - 1 + U_l^{(i)}$.

 $I_l^{(i)}, J_l^{(i)}, U_l^{(i)}$ not independent over *l* Prove that LLN ho

Prove that LLN holds for $\{I_l^{(i)}\}_l$ and $\{J_l^{(i)}\}_l$

 $I_l^{(i)}, J_l^{(i)}, U_l^{(i)}$ not independent over *l* Prove that LLN holds for $\{I_l^{(i)}\}_l$ and $\{J_l^{(i)}\}_l$

 $I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Prove that LLN holds for $\{I_l^{(i)}\}_l$ and $\{J_l^{(i)}\}_l$ $I_1^{(i)}, J_1^{(i)}, U_1^{(i)}$ not independent over l

$$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k) = \mathbb{E}[N(k)]/M$. $\alpha_{\beta} = \lim_{k \to \infty} \alpha_{\beta}(k)$

 $I_l^{(i)}, J_l^{(i)}, U_l^{(i)}$ not independent over *l* Prove that LLN holds for $\{I_l^{(i)}\}_l$ and $\{J_l^{(i)}\}_l$

$$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k) = \mathbb{E}[N(k)]/M$. $\alpha_{\beta} = \lim_{k \to \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta} = \mathbb{E}[U_{\beta}]/\mathbb{E}[I_{\beta}]$

 $I_l^{(i)}, J_l^{(i)}, U_l^{(i)}$ not independent over l Prove that LLN holds for $\{I_l^{(i)}\}_l$ and $\{J_l^{(i)}\}_l$

$$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k) = \mathbb{E}[N(k)]/M$. $\alpha_{\beta} = \lim_{k \to \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta} = \mathbb{E}[U_{\beta}]/\mathbb{E}[I_{\beta}]$

Lemma 3: When the system is stabilized, $\mathbb{E}[I_{\beta}] = M/c(M)$, $\mathbb{E}[U_{\beta}] = M\alpha_{\beta}/c(M) = o(M)$, c(M) is sum rate/throughput

 $I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \text{ not independent over } I \qquad \text{Prove that LLN holds for } \{I_{l}^{(i)}\}_{l} \text{ and } \{J_{l}^{(i)}\}_{l}$ $I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$ Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k) = \mathbb{E}[N(k)]/M$. $\alpha_{\beta} = \lim_{k \to \infty} \alpha_{\beta}(k)$ Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta} = \mathbb{E}[U_{\beta}]/\mathbb{E}[I_{\beta}]$ Lemma 3: When the system is stabilized, $\mathbb{E}[I_{\beta}] = M/c(M), \mathbb{E}[U_{\beta}] = M\alpha_{\beta}/c(M) = o(M), c(M)$ is sum rate/throughput

When *M* is sufficient large. By some algebra, $L^{EbT}(M) = \frac{1}{M} \frac{\mathbb{E}\left[\sum_{j=1}^{J_{\beta}} S_{j}^{2}\right]}{\mathbb{E}[I_{\beta}]} + \frac{1}{M} \frac{\mathbb{E}[U_{\beta}^{2}]}{\mathbb{E}[I_{\beta}]}$

 $I_1^{(i)}, J_1^{(i)}, U_1^{(i)}$ not independent over *l* Prove that LLN holds for $\{I_{l}^{(i)}\}_{l}$ and $\{J_{l}^{(i)}\}_{l}$ $I_{1}^{(i)}, J_{1}^{(i)}, U_{1}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$ Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta} = \mathbb{E}[U_{\beta}]/\mathbb{E}[I_{\beta}]$ Lemma 3: When the system is stabilized, $\mathbb{E}[I_{\beta}] = M/c(M)$, $\mathbb{E}[U_{\beta}] = M\alpha_{\beta}/c(M) = o(M)$, c(M) is sum rate/throughput When *M* is sufficient large. By some algebra, $L^{EbT}(M) = -\frac{1}{\Lambda}$ J_{β} : Stopping time

Propose to use Brown motion B_i as an approximation of S_i/σ .

nodes,
$$\alpha_{\beta}(k) = \mathbb{E}[N(k)]/M$$
. $\alpha_{\beta} = \lim_{k \to \infty} \alpha_{\beta}(k)$

$$\frac{1}{M} \frac{\mathbb{E}\left[\sum_{j=1}^{J_{\beta}} S_{j}^{2}\right]}{\mathbb{E}[I_{\beta}]} + \frac{1}{M} \frac{\mathbb{E}[U_{\beta}^{2}]}{\mathbb{E}[I_{\beta}]}$$

The estimate of $L^{EbT}(M)$ is $\hat{L}^{EbT}(M) = \frac{\frac{1}{5}\mathbb{E}[J_{\beta}^{2}] + \mathbb{E}[U_{\beta}^{2}]}{2M\mathbb{E}[I_{\beta}]}\sigma^{2}.$

The estimate of
$$L^{EbT}(M)$$
 is $\hat{L}^{EbT}(M) = \frac{\frac{1}{5}\mathbb{E}[J_{\beta}^{2}] + \mathbb{E}[U_{\beta}^{2}]}{2M\mathbb{E}[I_{\beta}]}\sigma^{2}$.

Theorem 1: Let *M* be sufficient large. An optimal β^* is approximately given by $\beta^* = \sigma \sqrt{eM}$, and $\hat{L}^{EbT}(M) = \frac{e}{6}\sigma^2$.

The estimate of
$$L^{EbT}(M)$$
 is $\hat{L}^{EbT}(M) = \frac{\frac{1}{5}\mathbb{E}[J_{\beta}^{2}] + \mathbb{E}[U_{\beta}^{2}]}{2M\mathbb{E}[I_{\beta}]}\sigma^{2}.$

Theorem 1: Let *M* be sufficient large. An optimal β^* is approximately given by $\beta^* = \sigma \sqrt{eM}$, and $\hat{L}^{EbT}(M) = \frac{e}{6}\sigma^2$.

 $\lim_{M\to\infty} \frac{L^{SAT}(M)}{\hat{L}^{EbT}(M)} = 3.$ The normalized estimation error of the SAT is around three times that of the EbT policy.

The estimate of
$$L^{EbT}(M)$$
 is $\hat{L}^{EbT}(M) = \frac{\frac{1}{5}\mathbb{E}[J_{\beta}^{2}] + \mathbb{E}[U_{\beta}^{2}]}{2M\mathbb{E}[I_{\beta}]}\sigma^{2}.$

Theorem 1: Let *M* be sufficient large. An optimal β^* is approximately given by $\beta^* = \sigma \sqrt{eM}$, and $\hat{L}^{EbT}(M) = \frac{e}{6}\sigma^2$.

 $\lim_{M\to\infty} \frac{L^{SAT}(M)}{\hat{L}^{EbT}(M)} = 3.$ The normalized estimation error of the SAT is around three times that of the EbT policy.

Estimation Error Analysis: the approximation error in $L^{EbT}(M)$ increases linearly with σ^2 .

Numerical Results

Fig. 2: NEWSEE as a func art scheme with M = 500.

Fig. 2: NEWSEE as a function of σ^2 for various state-of-the-

Numerical Results

Fig. 6: The gap (normalized by σ^2) between $L^{EbT}(M)$ and $\hat{L}^{EbT}(M)$ as a function of M for $\sigma^2 = 3$.

Thank you!