Real-time Sampling and Estimation on Random Access Channels: Age of Information and Beyond

2021 IEEE INFOCOM

Xingran Chen
Xinyu Liao
Shirin Saeedi Bidokhti
University of Pennsylvania

Background \& Motivation

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.

Background \& Motivation

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.
In applications of remote estimation and control, physical processes are observed at decentralized sensors that communicate wirelessly with a fusion center.

Background \& Motivation

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.
In applications of remote estimation and control, physical processes are observed at decentralized sensors that communicate wirelessly with a fusion center.

Remote and timely estimation.

- Remote estimation: various point-to-point scenarios
[O. Imer-T. Basar-2010], [M. Rabi-G. V. Moustakides-J. S. Baras-2012], [G. Lipsa-N. Martins-2011], [A. Molin-S. Hirche-2017]
[A. Nayyar-T. Basar-D. Teneketzis-V. V. Veeravalli-2012], [J. Chakravorty-A. Mahajan-2020], [X. Gao-E. Akyol-T. Basar-2018]
- Reliable v.s. Timely Communication: the rate and/or reliability \uparrow timeliness (Age of Information) \downarrow
[K. Huang-W. Liu-Y. Li-B. Vucetic-2019], [S. Kaul-M. Gruteser-V. Rai-J. Kenny-2011], [R. Talak-E. Modiano-2019],
[H. Sac-T. Bacinoglu-E. Uysal-Biyikoglu-G. Durisi-2018], [X. Chen-S. Saeedi-Bidokhti-2019], [X. Chen-K. Gatsis-H. Hassani-S. Saeedi-Bidokhti-2019]
[Y. Sun-Y. Polyanskiy-E. Uysal-Biyikoglu-2020],

Background \& Motivation

In the Internet of Things: Information is to be collected and communicated real-time within a decentralized network.
In applications of remote estimation and control, physical processes are observed at decentralized sensors that communicate wirelessly with a fusion center.

Remote and timely estimation.

- Remote estimation: various point-to-point scenarios
[O. Imer-T. Basar-2010], [M. Rabi-G. V. Moustakides-J. S. Baras-2012], [G. Lipsa-N. Martins-2011], [A. Molin-S. Hirche-2017]
[A. Nayyar-T. Basar-D. Teneketzis-V. V. Veeravalli-2012], [J. Chakravorty-A. Mahajan-2020], [X. Gao-E. Akyol-T. Basar-2018]
- Reliable v.s. Timely Communication: the rate and/or reliability timeliness (Age of Information)
[K. Huang-W. Liu-Y. Li-B. Vucetic-2019], [S. Kaul-M. Gruteser-V. Rai-J. Kenny-2011], [R. Talak-E. Modiano-2019],
[H. Sac-T. Bacinoglu-E. Uysal-Biyikoglu-G. Durisi-2018], [X. Chen-S. Saeedi-Bidokhti-2019], [X. Chen-K. Gatsis-H. Hassani-S. Saeedi-Bidokhti-2019] [Y. Sun-Y. Polyanskiy-E. Uysal-Biyikoglu-2020],

Decentralized sampling and remote estimation over a wireless collision channel

- Distributed decision making: each sensor decides when to sample and transmit information based only on its local observation [K. Gatsis-A. Ribeiro-G. Pappas-2015], [K. Gatsis-M. Pajic-A. Ribeiro-G. Pappas-2015], [G. Taricco-2012]
[X. Zhang-M. M. Vasconcelos-W. Cui-U. Mitra-2020]

System Model
M statistically identical sensors and a fusion center

System Model
M statistically identical sensors and a fusion center
Slotted time
Fusion Center

System Model

M statistically identical sensors and a fusion center
Slotted time
Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$

System Model

M statistically identical sensors and a fusion center
Slotted time

Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Collision channel, collision feedback, one time unit transmission delay

System Model

M statistically identical sensors and a fusion center
Slotted time

Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Collision channel, collision feedback, one time unit transmission delay
Buffer size 1 (Markovity Property). Node i estimates $X_{i}(k)$ by $\hat{X}_{i}(k)$

System Model

M statistically identical sensors and a fusion center
Slotted time

Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Collision channel, collision feedback, one time unit transmission delay
Buffer size 1 (Markovity Property). Node i estimates $X_{i}(k)$ by $\hat{X}_{i}(k)$

$$
L^{\pi}(M)=\lim _{K \rightarrow \infty} \mathbb{E}\left[L_{K}^{\pi}(M)\right] \quad L_{K}^{\pi}(M)=\frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K}\left(X_{i}(k)-\hat{X}_{i}(k)\right)^{2}
$$

System Model

M statistically identical sensors and a fusion center
Slotted time

Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Collision channel, collision feedback, one time unit transmission delay
Buffer size 1 (Markovity Property). Node i estimates $X_{i}(k)$ by $\hat{X}_{i}(k)$
$L^{\pi}(M)=\lim _{K \rightarrow \infty} \mathbb{E}\left[L_{K}^{\pi}(M)\right] \quad L_{K}^{\pi}(M)=\frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K}\left(X_{i}(k)-\hat{X}_{i}(k)\right)^{2}$
Minimum mean square error $(\mathrm{MMSE}): \hat{X}_{i}(k)=\mathbb{E}\left[X_{i}(k) \mid\left\{X_{i}\left(k_{t}^{(i)}\right)\right\}_{t=0}^{l-1}\right]=X_{i}\left(k_{l-1}^{(i)}\right)$

System Model

M statistically identical sensors and a fusion center
Slotted time

Each sensor i observes $X_{i}(k+1)=X_{i}(k)+W_{i}(k), W_{i}(k) \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Collision channel, collision feedback, one time unit transmission delay
Buffer size 1 (Markovity Property). Node i estimates $X_{i}(k)$ by $\hat{X}_{i}(k)$
$L^{\pi}(M)=\lim _{K \rightarrow \infty} \mathbb{E}\left[L_{K}^{\pi}(M)\right] \quad L_{K}^{\pi}(M)=\frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K}\left(X_{i}(k)-\hat{X}_{i}(k)\right)^{2}$
Minimum mean square error $(\mathrm{MMSE}): \hat{X}_{i}(k)=\mathbb{E}\left[X_{i}(k) \mid\left\{X_{i}\left(k_{t}^{(i)}\right)\right\}_{t=0}^{l-1}\right]=X_{i}\left(k_{l-1}^{(i)}\right)$
Oblivious policies and non-oblivious policies

Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11]

Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11]
$u(t)$: timestamp of the most recently received update; $h(t)=t-u(t)$
t_{k}^{\prime} : the receiving time of $k^{t h}$ status update
t_{k} : the generation time of $k^{t h}$ status update
Time average age: $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11]
$u(t)$: timestamp of the most recently received update; $h(t)=t-u(t)$
t_{k}^{\prime} : the receiving time of $k^{t h}$ status update
t_{k} : the generation time of $k^{t h}$ status update
Time average age: $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Lemma 1: In oblivious policies, the expected estimation error associated with process i has the following relationship with the expected age function: $\mathbb{E}\left[\left(X_{i}(k)-\hat{X}_{i}(k)\right)^{2}\right]=\mathbb{E}\left[h_{i}(k)\right] \sigma^{2}$.

Oblivious Policies and Age of Information

Oblivious policies: independent of processes they observe, less costly to implement

Age of Information: a metric to quantify the freshness of information, [Kaul-Yates-Grusteser-11]
$u(t)$: timestamp of the most recently received update; $h(t)=t-u(t)$
t_{k}^{\prime} : the receiving time of $k^{t h}$ status update
t_{k} : the generation time of $k^{t h}$ status update
Time average age: $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} h(t)$

Lemma 1: In oblivious policies, the expected estimation error associated with process i has the following relationship with the expected age function: $\mathbb{E}\left[\left(X_{i}(k)-\hat{X}_{i}(k)\right)^{2}\right]=\mathbb{E}\left[h_{i}(k)\right] \sigma^{2}$.

Based on Lemma 1, $L^{\pi}(M)=\sigma^{2} J^{\pi}(M), \quad J^{\pi}(M)=\lim _{K \rightarrow \infty} \frac{1}{M^{2}} \sum_{i=1}^{M} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[h_{i}^{\pi}(k)\right]$.
$J^{\pi}(M)$ is the normalized expected sum of age of information,
which was investigated in our prior work [X. Chen - K. Gatsis - H. Hassani - S. Saeedi Bidokhti-2019]

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20],

$$
\lim _{M \rightarrow \infty} J^{S A T}(M)=\frac{e}{2}, \quad \lim _{M \rightarrow \infty} L^{S A T}(M)=\frac{e}{2} \sigma^{2}
$$

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20],

$$
\lim _{M \rightarrow \infty} J^{S A T}(M)=\frac{e}{2}, \quad \lim _{M \rightarrow \infty} L^{S A T}(M)=\frac{e}{2} \sigma^{2}
$$

Centralized policy: at the beginning of each slot k, the Max-Weight policy chooses the action i^{*} such that $h_{i *}(k)=\max h_{i}(k)$.

Under SAT policy (Algorithm 2) in [X. Chen - K. Gatsis - H. Hassani - S. Saeedi-Bidokhti - 20],

$$
\lim _{M \rightarrow \infty} J^{S A T}(M)=\frac{e}{2}, \quad \lim _{M \rightarrow \infty} L^{S A T}(M)=\frac{e}{2} \sigma^{2}
$$

Centralized policy: at the beginning of each slot k, the Max-Weight policy chooses the action i^{*} such that $h_{i^{*}}(k)=\max _{i} h_{i}(k)$.

Under the Max-Weight policy, $\lim _{M \rightarrow \infty} L^{M W}(M)=\frac{\sigma^{2}}{2}$, which implies $\lim _{M \rightarrow \infty} \frac{L^{S A T}(M)}{L^{M W}(M)}=e$

Non-oblivious Policies

Non-oblivious policies: nodes can observe processes for decision making

Non-oblivious Policies

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Non-oblivious Policies

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|$

Non-oblivious Policies

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|$

The action of each node:
Node i becomes active if $\psi_{i}(k)$ has crossed a pre-determined threshold β.
It remains active until a packet is delivered.
All nodes transmit stochastically following Rivest's stabilized slotted ALOHA

Non-oblivious Policies

Non-oblivious policies: nodes can observe processes for decision making

Benefit from not only the age of information, but also the process realization

Define the error process $\psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|$

The action of each node:
Node i becomes active if $\psi_{i}(k)$ has crossed a pre-determined threshold β.
It remains active until a packet is delivered.
All nodes transmit stochastically following Rivest's stabilized slotted ALOHA

Error-based Thinning (EbT); Find an optimal threshold β

Preliminaries:

Preliminaries:

Consider an inter-delivery interval (for node i): $\left(k_{l-1}^{(i)}, k_{l}^{(i)}\right] ; I_{l}^{(i)}=k_{l}^{(i)}-k_{l-1}^{(i)}$

Preliminaries:

Consider an inter-delivery interval (for node i): $\left(k_{l-1}^{(i)}, k_{l}^{(i)}\right] ; I_{l}^{(i)}=k_{l}^{(i)}-k_{l-1}^{(i)}$
For any time slot $k, k_{l-1}^{(i)}<k \leq k_{l}^{(i)}, \psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|=\left|\sum_{j=k_{l-1}^{(i)}}^{k-1} W_{i}(j)\right|$

Preliminaries:

Consider an inter-delivery interval (for node i): $\left(k_{l-1}^{(i)}, k_{l}^{(i)}\right] ; I_{l}^{(i)}=k_{l}^{(i)}-k_{l-1}^{(i)}$
For any time slot $k, k_{l-1}^{(i)}<k \leq k_{l}^{(i)}, \psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|=\left|\sum_{j=k_{l-1}^{(i)}}^{k-1} W_{i}(j)\right|$
Let $S_{n}=\sum_{j=1}^{n} W_{j}$, then $\psi_{i}(k)=\left|\sum_{j=k_{l-1}^{(i)}}^{k-1} W_{i}(j)\right| \sim\left|S_{h_{i}(k)}\right|$.

Preliminaries:
Consider an inter-delivery interval (for node i): $\left(k_{l-1}^{(i)}, k_{l}^{(i)}\right] ; I_{l}^{(i)}=k_{l}^{(i)}-k_{l-1}^{(i)}$
For any time slot $k, k_{l-1}^{(i)}<k \leq k_{l}^{(i)}, \psi_{i}(k)=\left|X_{i}(k)-\hat{X}_{i}(k)\right|=\left|\sum_{j=k_{l-1}^{(i)}}^{k-1} W_{i}(j)\right|$
Let $S_{n}=\sum_{j=1}^{n} W_{j}$, then $\psi_{i}(k)=\left|\sum_{j=k_{l-1}^{(i)}}^{k-1} W_{i}(j)\right| \sim\left|S_{h_{i}(k)}\right|$.

Definition 3: Define $J_{l}^{(i)}=k_{0}-k_{l-1}^{(i)}$ as the silence delay.
Define $U_{l}^{(i)}=k_{l}^{(i)}-k_{0}+1$ as transmission delay. $I_{l}^{(i)}=J_{l}^{(i)}-1+U_{l}^{(i)}$.

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k)=\mathbb{E}[N(k)] / M . \alpha_{\beta}=\lim _{k \rightarrow \infty} \alpha_{\beta}(k)$

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k)=\mathbb{E}[N(k)] / M . \alpha_{\beta}=\lim _{k \rightarrow \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta}=\mathbb{E}\left[U_{\beta}\right] / \mathbb{E}\left[I_{\beta}\right]$

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k)=\mathbb{E}[N(k)] / M . \alpha_{\beta}=\lim _{k \rightarrow \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta}=\mathbb{E}\left[U_{\beta}\right] / \mathbb{E}\left[I_{\beta}\right]$

Lemma 3: When the system is stabilized, $\mathbb{E}\left[I_{\beta}\right]=M / c(M), \mathbb{E}\left[U_{\beta}\right]=M \alpha_{\beta} / c(M)=o(M), c(M)$ is sum rate/throughput

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k)=\mathbb{E}[N(k)] / M . \alpha_{\beta}=\lim _{k \rightarrow \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta}=\mathbb{E}\left[U_{\beta}\right] / \mathbb{E}\left[I_{\beta}\right]$

Lemma 3: When the system is stabilized, $\mathbb{E}\left[I_{\beta}\right]=M / c(M), \mathbb{E}\left[U_{\beta}\right]=M \alpha_{\beta} / c(M)=o(M), c(M)$ is sum rate/throughput

When M is sufficient large. By some algebra, $L^{E b T}(M)=\frac{1}{M} \frac{\mathbb{E}\left[\sum_{j=1}^{J_{\beta}} S_{j}^{2}\right]}{\mathbb{E}\left[I_{\beta}\right]}+\frac{1}{M} \frac{\mathbb{E}\left[U_{\beta}^{2}\right]}{\mathbb{E}\left[I_{\beta}\right]}$

Non-oblivious Policies

$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)}$ not independent over $l \quad$ Prove that LLN holds for $\left\{I_{l}^{(i)}\right\}_{l}$ and $\left\{J_{l}^{(i)}\right\}_{l}$
$I_{l}^{(i)}, J_{l}^{(i)}, U_{l}^{(i)} \longrightarrow I_{\beta}, J_{\beta}, U_{\beta}$

Definition 5: Define $\alpha_{\beta}(k)$ as the expected fraction of active nodes, $\alpha_{\beta}(k)=\mathbb{E}[N(k)] / M . \alpha_{\beta}=\lim _{k \rightarrow \infty} \alpha_{\beta}(k)$

Lemma 2: When the system is stabilized, α_{β} exists, and $\alpha_{\beta}=\mathbb{E}\left[U_{\beta}\right] / \mathbb{E}\left[I_{\beta}\right]$

Lemma 3: When the system is stabilized, $\mathbb{E}\left[I_{\beta}\right]=M / c(M), \mathbb{E}\left[U_{\beta}\right]=M \alpha_{\beta} / c(M)=o(M), c(M)$ is sum rate/throughput

When M is sufficient large. By some algebra, $L^{E b T}(M)=\frac{1}{M} \frac{\mathbb{E}\left[\sum_{j=1}^{J_{\beta}} S_{j}^{2}\right]}{\mathbb{E}\left[I_{\beta}\right]}+\frac{1}{M} \frac{\mathbb{E}\left[U_{\beta}^{2}\right]}{\mathbb{E}\left[I_{\beta}\right]}$
J_{β} : Stopping time
Propose to use Brown motion B_{j} as an approximation of S_{j} / σ.

Non-oblivious Policies

The estimate of $L^{E b T}(M)$ is $\hat{L}^{E b T}(M)=\frac{\frac{1}{5} \mathbb{E}\left[J_{\beta}^{2}\right]+\mathbb{E}\left[U_{\beta}^{2}\right]}{2 M \mathbb{E}\left[I_{\beta}\right]} \sigma^{2}$.

Non-oblivious Policies

The estimate of $L^{E b T}(M)$ is $\hat{L}^{E b T}(M)=\frac{\frac{1}{5} \mathbb{E}\left[J_{\beta}^{2}\right]+\mathbb{E}\left[U_{\beta}^{2}\right]}{2 M \mathbb{E}\left[I_{\beta}\right]} \sigma^{2}$.

Theorem 1: Let M be sufficient large. An optimal β^{*} is approximately given by $\beta^{*}=\sigma \sqrt{e M}$, and $\hat{L}^{E b T}(M)=\frac{e}{6} \sigma^{2}$.

Non-oblivious Policies

The estimate of $L^{E b T}(M)$ is $\hat{L}^{E b T}(M)=\frac{\frac{1}{5} \mathbb{E}\left[J_{\beta}^{2}\right]+\mathbb{E}\left[U_{\beta}^{2}\right]}{2 M \mathbb{E}\left[I_{\beta}\right]} \sigma^{2}$.

Theorem 1: Let M be sufficient large. An optimal β^{*} is approximately given by $\beta^{*}=\sigma \sqrt{e M}$, and $\hat{L}^{E b T}(M)=\frac{e}{6} \sigma^{2}$.
$\lim _{M \rightarrow \infty} \frac{L^{S A T}(M)}{\hat{L}^{E b T}(M)}=3$. The normalized estimation error of the SAT is around three times that of the EbT policy.

Non-oblivious Policies

The estimate of $L^{E b T}(M)$ is $\hat{L}^{E b T}(M)=\frac{\frac{1}{5} \mathbb{E}\left[J_{\beta}^{2}\right]+\mathbb{E}\left[U_{\beta}^{2}\right]}{2 M \mathbb{E}\left[I_{\beta}\right]} \sigma^{2}$.

Theorem 1: Let M be sufficient large. An optimal β^{*} is approximately given by $\beta^{*}=\sigma \sqrt{e M}$, and $\hat{L}^{E b T}(M)=\frac{e}{6} \sigma^{2}$.
$\lim _{M \rightarrow \infty} \frac{L^{S A T}(M)}{\hat{L}^{E b T}(M)}=3$. The normalized estimation error of the SAT is around three times that of the EbT policy.

Estimation Error Analysis: the approximation error in $L^{E b T}(M)$ increases linearly with σ^{2}.

Numerical Results

Fig. 2: NEWSEE as a function of σ^{2} for various state-of-theart scheme with $M=500$.

Numerical Results

Fig. 6: The gap (normalized by σ^{2}) between $L^{E b T}(M)$ and $\hat{L}^{E b T}(M)$ as a function of M for $\sigma^{2}=3$.

Thank you!

