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Rate efficiency: 1s often provided by channel coding schemes; cost of large delays;

not clear a-prior1t what types of tradeoffs exist between rate and timeliness.

[Chen-Huang-16], [ Yates-Najm-Soljanin-Zhong-17], [Parag-Taghavi-Chamberland-17], [Najm-Telater-Nasser-19],
[Sac-Bacinoglu-Biyikoglu-Durisi-18], [Feng-Yang-19, 20], [Costa-Sagduyu-19]
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In the context of broadcast packet erasure channels (BPECs) with feedback, our prior
work [chen-sacedi Bidokhii-19] cOding 18 shown to be beneficial for age etfficiency with two

USCTS.

We build on our previous work [20] and consider an erasure wireless network with M
users.
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Transmission delay 1s one time slot.

Let d.(k) = 1if user i decodes a packet of type i in time k.

A packet (not received by the intended user) can be cached by other user(s) that have
received it.

We call a packet coded 1t 1t 1s formed by combining more than one packets; uncoded.
A coded packet 1s fully decoded: user 1 extracts all uncoded packets combined within it.

We consider three type policies: (1) policies that benefit from coding by caching uncoded
packets, (11) policies that benefit from coding by caching general packets, (111) time-sharing
policies.
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USCTS.

Side information graph: add an edge between nodes (i, /) 1t Q; ¢ 1s non-empty for &’

that has j as an element. Condition (1) corresponds to the subgraph induced by nodes
{7, -, 7,} forming a clique of size 7.

It 1s sufficient to consider all possible maximal cliques.
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Define the age of information of at user i as /,(k)

The expected weighted sum of Aol at the users 1s given by [E[Jz] where

Let g; > 0O be the minimum rate requirement of node i.
| K
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The minimum rate constraint: v > ¢;, 1€ {1,2,---,M}
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— T K-

s.t. rr>2¢q, 1€{1,2,-,M}
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Define the age of information of Q; ¢ as w; (k).

Define the age-gain of Q; ¢ as o; ¢ = hy(k) — w; o(k). .

Let x,(k) be the throughput debt associate with node i: x;(k + 1) = kg, — Z d:' (7).

=1

2 2
Define the rate-gain of user i as f (k) = ((xl-(k) + ql-)+) — ((xl-(k) + q; — 1)+) .
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ARM policy: In each slot k, the ARM policy chooses the action that has the maximum
weight A(k) Weights

Qi (1 —€;) (5i5z‘,z(k) + )‘fi(k))

Ouci|@ru.s.. | S Br.0,.5., (k) (1 = €r,)
+)‘ Zuzl(]‘ o ETu)fTu(k)

Remark: We have observed in simulations that a good approximation of the above ARM
policy 1s obtained by choosing the maximum clique size to be 2. This captures most of
the gain with a much reduced complexity. The number of coding actions reduces from

OM” 10 2M(M — 1)°.
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Let C#c09¢d pe the set of all tuples g = (g, g, ¢) for which the system is strongly

stabilized. Then, define a symmetric stationary randomized policy:
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Pr{AK) = @ Qps } = Heys, s
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By symmetry, let p; g5 = U, He (1)),0,,10,) = S0 Bay () o (11,050 = 620 oy (o5} = 63

and ’uﬁa{fza’%}»72»{71973}9739{71972} — 54



Upper bound

min — — + A
u v u(l —e)
u(l—e’)>gq Tradeoff !

(u+E)A—e)+E(1—€)>q

w(l =2e*+e)+25(1 —e)+25(1 —€?) > g
(m+25+46,+ 265+ 6)( —€) 2 ¢g
u=0c2>205=1234



[.ower bound

For any policy 7 with communication rate r/, we have the following lower bound on
J(q):

M Lo
Jq) > — + ) —
T2 rFlay D M

1 <& a



Simulation Results

Benefits of Coding
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Simulation Results

Tradeoff between Age and Rate
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