
Non-asymptotic Coded Slotted ALOHA

Mohammad Fereydounian
University of Pennsylvania

mferey@seas.upenn.edu

Xingran Chen
University of Pennsylvania
xingranc@seas.upenn.edu

Hamed Hassani
University of Pennsylvania

hassani@seas.upenn.edu

Shirin Saeedi Bidokhti
University of Pennsylvania

saeedi@seas.upenn.edu

Abstract—Coding for random access communication is a key
challenge in Internet of Things applications. In this paper, the well-
known scheme of Coded Slotted Aloha (CSA) is considered and its
performance is analyzed in the non-asymptotic regime where the
frame length and the number of users are finite. A density evolu-
tion framework is provided to describe the dynamics of decoding,
and fundamental limits are found on the maximum channel load
(i.e., the number of active users per time slot) that allows re-
liable communication (successful decoding). Finally, scaling laws
are established, describing the non-asymptotic relation between the
probability of error, the number of users, and the channel load.

I. INTRODUCTION

The technology of Internet of Things (IoT) has brought new
challenges in the design of multi-access communication sys-
tems. In traditional networks, the number of users is small and
it is hence practical to coordinate them for transmission. For ex-
ample, this can be done with the help of a common clock that
can be implemented through a low rate (vanishing by block-
length) communication link. In IoT applications, however, the
number of users is very large, orders of magnitude larger than
the blocklength. For example, in Low-Power Wide-Area Net-
works (LP-WANs), the number of users is in the order of tens
of millions. Clearly, coordinating all the users is infeasible in
such scenarios and hence communication should be assumed
uncoordinated. This has motivated the key challenge of cod-
ing for massive random access communication, where senders
communicate their packets in a bursty manner at random times.

The literature on massive random access communication ranges
from traditional (slotted) ALOHA-type protocols [1–3], to re-
cent information theoretic frameworks and code designs in the
regime of operation where the total number of users scale lin-
early with the blocklength [4,5]. Slotted ALOHA [1] is one
of the first random-access protocols that deals with collisions
through random re-transmission of packets and it is still in use
for cellular and satellite communication. In [3,6], the problem
of recovering from collisions has been tackled from the perspec-
tive of error correcting codes. The idea is to encode redundancy
into the transmitted packets via repetition coding, leading to the
class of Irregular Repetition Slotted ALOHA (IRSA) schemes
[3], or more generally via an error correcting code, leading to
the class of Coded Slotted ALOHA (CSA) schemes [6]. The
redundancy is then exploited in decoding by successive cancel-
lation and a corresponding iterative message passing algorithm.
Exploiting a bipartite graph representation, [6] derives density
evolution equations for CSA and analyzes the SIC process in
an asymptotic setting where the frame length and the number
of users both tend to infinity (their ratio remaining constant).

In this work, we provide a non-asymptotic analysis of CSA.
The non-asymptotic regime is arguably the practical regime of
interest especially in applications where delay is of importance.
Previous works on random access schemes, including coded
variants of SA, have mostly relied on simulations to address
the non-asymptotic performance of the schemes. Some notable
exceptions are [7–10]. The works in [7–9] analyze CSA in the
error floor region, and [10] provides a finite-length analysis for

IRSA in the waterfall region. To the best of our knowledge, a
finite-length analysis of the more general class of CSA proto-
cols in the waterfall region has been missing from the literature.
In summary, our contributions are as follows:

• We use connections between CSA and low-density parity-
check (LDPC) codes that were established in [6] and build
on methods of [11] to analyze LDPC codes in the finite
blocklength regime. In a recent work, [10] uses a simi-
lar approach and provides the non-asymptotic analysis of
the special class of IRSA random access codes. While the
existing analytical derivations for LDPC ensembles are di-
rectly applicable to the analysis of IRSA, they turn out to
be insufficient for CSA. Assuming a regular CSA ensem-
ble in which users have the same rate and blocklength, we
generalize techniques of LDPC codes to analyze the per-
formance of regular CSA in the non-asymptotic regime.
This generalization includes the derivation of a new den-
sity evolution procedure for CSA via differential equations
(see Section III) as well as scaling laws which describe pre-
cisely how the probability of error scales with respect to
the number of users and the channel load (see Section IV).

• Channel load G is defined to be the number of active users
per time slot. It turns out that CSA ensembles encounter a
threshold effect, meaning that there is a maximum achiev-
able channel load G∗ such that for G > G∗, it is almost
surely impossible to decode all messages and for G < G∗
it is almost surely possible. We obtain G∗ analytically as
a root of an algebraic equation (see Section III).

• Finally, we simulate the performance of CSA protocols and
validate our analytical results (see Section V).

We refer to [12] for a long version of this paper with all the proofs.

II. PRELIMINARIES

Suppose we have a multi-access channel with Na active users.
An active user is one that has a message to send at the current
time. In Slotted Aloha (SA) protocols, channel resources (e.g.,
time) are divided into slots. Let M denote the number of time
slots. Channel load G is then defined as

G =
Na

M
.

Each active user chooses a set of time slots to send its message.
If two users transmit during the same time slot, a collision oc-
curs (see Figure 1a). In case of collision, the receiver has only
access to the summation of all the collided packets. We assume
that a packet cannot be recovered in a time slot unless all the
other collided packets are previously recovered and hence can
be subtracted from the summation. To increase reliability, one
can encode a message in one packet and repeat this packet n
times. In this way, the information rate is reduced to R = 1/n.
This scheme is called Repetition Slotted ALOHA (RSA). Re-
placing repetition coding with a general coding scheme is a
fundamental way to increase the rate while ensuring high relia-
bility in communication systems. This approach leads to Coded
Slotted Aloha (CSA) introduced in [6].

111978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

user 1

user 2

user 3

user 4

slice 1 slice 2

slot 1

collision

slice 4 slice 5 slice 6 slice 7 slice 8

slot 4

(a) Time slice allocation
UN0 SN0

1

2

3

4

1

2

3

4

5

6

7

8

(b) K0

UN4 SN4

1

2

3

4

1

2

3

4

5

6

7

8

(c) K4

Figure 1: A realization of CSA scheme with parameters Na =
4, M = 4, n = 3, k = 2, m = kM = 8. The edges connected to
singletons are depicted in dashed lines.

The CSA scheme is described as follows: Each time slot
is divided into k smaller time slices. We thus have m = kM
time slices in total. Each message is also divided into k smaller
packets, and a coding scheme is used to encode these k packets
into n coded packets. Each user chooses n distinct time slices
out of m time slices uniformly at random to send its n coded
packets. The setting is illustrated in Figure 1a for 4 users with
n = 3, k = 2, and m = 8. We assume that fully recovering
any set of k coded packets out of n coded packets is enough
to recover the original message. Therefore, the resulting rate is
R = k/n (note that the special case k = 1 is equivalent to
RSA). For simplicity, we consider a regular scenario in which
all users utilize the same blocklength n. We refer to such a CSA
scheme by CSA(n, k, Na, M).

For decoding, we use a successive interference cancellation
(SIC) procedure: At each step q ∈ {0, 1, 2, . . . }, we first find
a collision-free time slice containing only one packet and then
we fully recover that packet. From this packet, we identify the
corresponding user, and we mark this packet as “decoded". For
any user, when k out of n packets are marked as decoded, then
the user’s original message can be fully recovered, and as a re-
sult, all of its n packets are known. We thus can subtract those
n packets from their corresponding time slices, remove the user,
and mark the user as resolved. This elimination may result in
further collision-free slices with only one packet inside. We
then continue decoding by finding the next collision-free slice.
The decoding stops when there is no collision-free slice left.
At this point, if all users are resolved, decoding is successful,
otherwise, we declare a B-error (in analogy to block error in
decoding LDPC codes). If a B-error occurs, the fraction of un-
resolved users is statistically known as packet loss probability
(PLP). In terms of analysis, PLP can be simply computed in
terms of the probability of B-error (see [13]).

For a refined analysis of the SIC process discussed above,
we need a more structured modeling based on a bipartite graph
which we call the decoding graph. This is analogous to the so-
called Tanner graph used for the analysis of LDPC codes [13].

Define a bipartite graph K with two sets of nodes: A set of Na
user nodes UN and a set of m slice nodes SN. The ith user node
represents the ith active user, where i ∈ {1, . . . , Na} and the jth
slice node represents the jth time slice, where j ∈ {1, . . . , m}.
For each user, there is an edge to the n slice nodes in which
its packets are sent. As a result, each user node has degree n.
However, the degree of a slice node is potentially between 0
and Na. We recall that neighbours of a user node are chosen
uniformly at random among slice nodes. A slice node with de-
gree 1 is called a singleton. Moreover, at each step, the graph
resulted from the previous step is called the residual graph. We
refer to this SIC decoding process as the peeling process.

Figure 1a shows the initial time slice allocation while Fig-
ures 1a, 1b, and 1c illustrate the SIC process for a CSA real-
ization with 4 users and parameters n = 3, k = 2, and m = 8.
Figures 1b and 1c represent the residual graphs at iterations
q = 0 and q = 4. As it can be seen, the initial graph K0 in-
cludes 4 singletons, namely, slice nodes 2, 4, 7, and 8. The slice
nodes 2, 4, 7, will be removed in iterations q = 0, 1, 2, respec-
tively. In iteration q = 3, we first remove the slice node 8. At
this point, 2 out 3 slice nodes connecting to user node 4 are
decoded. This means user node 4 is resolved and it must be re-
moved from the graph. This makes a new singleton i.e., slice
node 6 and the process goes to iteration 4.
A. Notation and Definitions

Throughout this paper, the set of edges of a graph K is
denoted by E(K), the number of elements of a set S is de-
noted by |S|, and the expectation of a random variable X is
denoted by E[X]. Consider a continuous time t. Suppose step
q ∈ {0, 1, 2, . . . } of the peeling process happens at t = q∆t
where ∆t = 1/E, and E = nNa is the total number of edges
in K. Also, let t f be stopping time due to failure or success.
Let Kt be the residual graph at time t and UNt and SNt be the
corresponding sets of user nodes and slice nodes of Kt. Note
that K0 = K, UN0 = UN, SN0 = SN and thus |UN0| = Na
and |SN0| = m = kM. Now, for i ∈ {n− k + 1, . . . , n},
j ∈ {0, . . . , Na}, and t ∈ [0, t f], we define

Li(t) := E
[
|{e ∈ E(Kt) : e is connected to u ∈ UNt

with deg(u) = i}|
]
,

li(t) :=
Li(t)

E
= Li(t)∆t, λi := li(t)

∣∣∣∣
t=0

,

Rj(t) := E
[
|{e ∈ E(Kt) : e is connected to s ∈ SNt

with deg(s) = j}|
]
,

rj(t) :=
Rj(t)

E
= Rj(t)∆t, ρj := rj(t)

∣∣∣∣
t=0

.

Also define e(t) := E [|E(Kt)|] /E which represents the nor-
malized expected number of edges in the residual graph.

III. ASYMPTOTIC ANALYSIS

A. Differential Equations for Density Evolution

Consider the CSA(n, k, Na, M) model defined in Section II.
By applying the peeling process to the elements of this model,
as Na increases, the sequence of residual graphs closely follows
a “typical path”. We now construct a set of coupled differen-
tial equations describing this typical behavior. This method is
known as the Wormald’s method and has been applied to vari-
ety of problems [13,14]. We call the sequence

{
li(t), rj(t)

}
i,j,

the degree distribution of residual graph at time t. This degree
distribution constitutes a sufficient statistic for tracking the dis-
tribution of the residual graph (see [13]).

112

In order to obtain differential equations describing the dy-
namics of li(t) and rj(t), our first step is to compute the change
in Li(t) at each step of the peeling process i.e., computing
Li(t + ∆t) − Li(t). As defined earlier, Li(t) denotes the ex-
pected number of edges which are connected to degree i user
nodes at time t. Consider the peeling process at time t. First, a
singleton (a degree 1 slice node) s ∈ SNt is chosen arbitrarily.
Let e be the connecting edge. Then, s and e are removed. By this
removal, a change in Li(t) happens only when e is connected to
a degree i or i + 1 user node. With probability li(t)/e(t), e is
connected to a degree i user node u. In this case, by removing
e, u is not of degree i anymore and thus Li(t) will be decreased
by i units. Also, with probability li+1(t)/e(t), e is connected
to a degree i + 1 user node u′. In this case, by removing e, u′
becomes a degree i node and thus Li(t) will be increased by i
units. Note that the latter case is valid when i < n since i + 1
must exist. Thus, based on this argument, we have the follow-
ing equations for the case n− k + 1 ≤ i ≤ n− 1 and the case
i = n: 

Li(t + ∆t)− Li(t) = −i · li(t)
e(t)

+ i · li+1(t)
e(t)

,

Ln(t + ∆t)− Ln(t) = −n · ln(t)
e(t)

.
(1)

Considering li(t) = Li(t)∆t and Na → ∞, we have E =
nNa → ∞ and ∆t = 1/E→ 0. Therefore, (1) becomes

dli(t)
dt

= i · li+1(t)− li(t)
e(t)

, n− k + 1 ≤ i < n,

dln(t)
dt

= −n · ln(t)
e(t)

.
(2)

Let us now explain how to derive similar equations for the vari-
ables rj. Consider the decoding procedure at time t. Define a(t)
to be the expected number of the edges that are removed in this
time step. Let s ∈ SNt be the singleton that is removed and
e be the connecting edge. With probability ln−k+1(t)/e(t), e
is connected to a degree n− k + 1 user node u. In this case,
after peeling s and e, u becomes of degree n− k. This leads
to the removal of u which further results in removing n − k
other edges (connected to u) and in total n− k + 1 edges will
be removed in this step. Otherwise, if e is not connected to a
user node with degree n− k + 1, only e will be removed and
decoding process goes to the next step. Thus, we have

a(t) = (n− k + 1) · ln−k+1(t)
e(t)

+
n

∑
i=n−k+2

1 · li(t)
e(t)

. (3)

Note that the expected number of deleted edges other than e, is
a(t)− 1. Now, consider one of these deleted edges, namely, e′.
Then with probability rj(t)/e(t), e′ is connected to a degree
j slice node. In this case, Rj(t) will be decreased by j units.
Also, with probability rj+1(t)/e(t), e′ is connected to a degree
j + 1 slice node and in this case, Rj will be increased by j
units. This is true for any such e′ and expected number of them
is a(t)− 1. Here, it is important to note that for j, the degree
of a slice node, we have j ≤ Na. Thus, the above argument is
valid when j < Na since j+ 1 must exist. This argument results
in the following equations:

for 2 ≤ j < Na : Rj(t + ∆t)− Rj(t)

=

(
−j ·

rj(t)
e(t)

+ j ·
rj+1(t)

e(t)

)
· (a(t)− 1) ,

RNa(t + ∆t)− RNa(t) = −Na ·
rNa(t)
e(t)

· (a(t)− 1) .

(4)

Substituting rj(t) = Rj(t)∆t and considering Na → ∞ then
gives E = nNa → ∞. As a result, ∆t = 1/E → 0 and only
the first equation in (4) matters. Therefore, (4) becomes

drj(t)
dt

= j ·
(
rj+1(t)− rj(t)

)
· a(t)− 1

e(t)
, j ≥ 2. (5)

In order to solve (2) and (5) analytically, the following change
of variable is useful since it eliminates e(t):

t 7−→ x = exp
(∫ t

0

dτ

e(τ)

)
⇒ dx

x
=

dt
e(t)

. (6)

As a result, for the initial point, we have t = 0 7−→ x = 1.
For simplicity, we consider this new variable x as “time". By
applying this change of variable to (2) and (5), we have

dli(x)
dx

= i · li+1(x)− li(x)
x

, n− k + 1 ≤ i < n,

dln(x)
dx

= −n · ln(x)
x

,
(7)

drj(x)
dx

= −j ·
(
rj+1(x)− rj(x)

)
· a(x)− 1

x
, j ≥ 2. (8)

Note that by using the change of variable t 7→ x described in
(6), as Na → ∞, we have

e(x) =
n

∑
i=n−k+1

li(x) = ∑
j≥1

rj(x). (9)

⇒ r1(x) = e(x)−∑
j≥2

rj(x). (10)

In order to solve these equations, we need to determine their
initial conditions. Recall that we defined λi = li(t = 0) =
li(x = 1), ρj = rj(t = 0) = rj(x = 1), and that λi denotes the
fraction of edges connected to a degree i user node in the initial
graph K0. As we discussed earlier, initially each user node has
degree n which means

λi =

{
0, n− k + 1 ≤ i < n,
1, i = n.

(11)

Determining ρj requires further computations. We ignore empty
time slices (corresponding to j = 0) and focus on j ≥ 1. The
following lemma gives ρj for j ≥ 1.
Lemma 1. Consider CSA(n, k, Na, M) and suppose Na → ∞
and M → ∞ with G = Na/M to be a fixed constant. Also,
suppose R = k/n. Then for j ≥ 1, we have

ρj =
1

(j− 1)!

(
G
R

)j−1
exp

(
−G

R

)
. (12)

The set of differential equations given by (7), (8), and, (10)
together with their initial conditions given by (11) and (12)
characterize the evolution of degree distribution of the residual
graph. In the rest of this manuscript, we refer to them as density
evolution.

B. Solving Density Evolution

In this section, we provide solutions for the density evolution
discussed in the previous section.
Theorem 1. The finite recursive sequence of differential equa-
tions defined in (7) together with initial conditions li(1) = λi,
where λi is given by (11), result in the following solution:

li(x) =
n

∑
j=n−k+1

α
(i)
j

xj , i ∈ {n− k + 1, · · · , n} , (13)

113

where
{

α
(i)
j

}
i,j

, n− k+ 1 ≤ i ≤ j ≤ n, is a finite 2-dimensional

recursive sequence of integers which is (uniquely) determined
by the following equations:

α
(n)
n = 1

α
(i)
i =

n

∑
j=i+1

(−1)j−i+1
(

j− 1
i− 1

)
α
(j)
j , n− k + 1 ≤ i < n,

α
(i)
j = (−1)j−i

(
j− 1
i− 1

)
α
(j)
j , i < j ≤ n.

(14)

Lemma 2. Consider e(x) as given in (9), then we have

e(x) =
n

∑
j=n−k+1

β j

xj , (15)

where β j is a finite sequence of integers defined below.

β j := α
(j)
j (−1)j

j

∑
i=n−k+1

(−1)i
(

j− 1
i− 1

)
, (16)

and α
(j)
j is given by (14).

In order to find the solution of the infinite recursive sequence
of differential equations described in (8), we use a function
λ(x). Let λ(x) be the function satisfying

λ′(x)
λ(x)

=
a(x)− 1

x
, λ(1) = 1, (17)

where a(x) is obtained from (3) by applying the change of
variable in (6).
Lemma 3. Consider λ(x) defined in (17), then we have

λ(x) = exp

(n− k)
∫ x

1

∑k−1
j=0 α

(n−k+1)
n−j yj

∑k−1
j=0 βn−jyj+1

dy

 , (18)

where α
(j)
j is determined by (14) and β j is defined in (16).

Theorem 2. The infinite recursive sequence of differential equa-
tions defined in (8) together with initial conditions rj(1) = ρj
given in (12) result in the following solution:

rj(x) =
1

(j− 1)!λj(x)

(
G
R

)j−1
exp

(
− G

Rλ(x)

)
, j ≥ 2.

(19)

Moreover, this result, together with (15) and (10), imply

r1(x) =

[
n

∑
j=n−k+1

β j

xj

]
− 1

λ(x)

(
1− exp

(
− G

Rλ(x)

))
,

(20)
where β j is defined in (16) and λ(x) is given in (18).

C. Finding The Maximum Achievable Channel Load G∗

We now use the results of the previous section to find an an-
alytic expression for the threshold G∗, i.e. the maximum load
for which decoding succeeds with high probability. Suppose
that the decoding procedure stops at time x f . Decoding is suc-
cessful if and only if the residual graph at time x f is empty;
otherwise, there are some unresolved user nodes left. Note that
regardless of success or failure, we have r1(x f) = 0. To illus-
trate better, it is helpful to consider the plots given in Figure 2.
When G < G∗, the function r1(x) takes value 0 (i.e. touches
the x-axis) only when the decoding graph becomes empty and

1 1.5 2 2.5 3 3.5 4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

r 1
(x

)

G=0.45

G=0.55

G=0.65

G
*
=0.7253

Figure 2: The curves r1(x), computed from (20) with n = 6
and k = 2, for different channels loads G = 0.45, 0.55, 0.65, as
well as the threshold G∗ = 0.7253. Note that at G∗ the curve
r1(x) is tangent to the x-axis at x∗ = 1.2822. The values of x∗
and G∗ are computed from Theorem 3.

all the other variables become 0. The function is strictly posi-
tive otherwise. It can be easily argued (see the longer version
of this paper [12]) that, at the threshold G = G∗, the function
r1(x) becomes tangent to the x-axis exactly once at a point x∗
(see Figure 2). In order to find the relation between x∗ and G∗,
we consider (20). For any x, we define G̃(x) as the channel
load which results in r1(x) = 0. Hence, G̃(x) is found as

G̃(x) = −Rλ(x) log (1− e(x)λ(x)) , (21)

where e(x) is given in (15). We further know that exactly at the
threshold G = G∗ the function r1(x) is tangent to the x-axis at
x = x∗. From this, we can conclude that the derivative of the
function G̃(x) is zero at x = x∗ (see [12]). We thus have

dG̃(x)
dx

∣∣∣∣
x=x∗

= 0, G∗ = G̃(x∗). (22)

Using these relations, an algebraic formulation for G∗ is found
in the following theorem.
Theorem 3. Consider ln−k+1(x), e(x), λ(x), and G̃(x) which
are given by (13), (15), (18), and (21), respectively, and de-
fine h(x) = e(x)λ(x). Then the maximum achievable channel
load G∗ satisfies G∗ = G̃(x∗), where x∗ is the solution of the
following algebraic equation:

log(1− h(x)) =
1− h(x)

h(x)

(
1 +

xe′(x)
(n− k)ln−k+1(x)

)
. (23)

IV. NON-ASYMPTOTIC ANALYSIS

Let PB(Na, G) denote the probability that a B-error (defined
in Section II) occurs in the CSA(n, k, Na, M) scheme under the
discussion with Na active users and M = Na/G time slots.
PB(Na, G) encounters a threshold effect in terms of G. In other
words, there is a threshold G∗ such that if G > G∗, then
PB(Na, G) → 1 and if G < G∗, PB(Na, G) → 0. In the non-
asymptotic case, however, this transition occurs smoothly in a
region close to G∗ which is called the waterfall region. The be-
havior of PB in the waterfall region turns out to be governed
by the so-called scaling law. [11] analyzed the scaling law for
LDPC ensembles. In analogy to that analysis, we will have the
following formula for our setting:

PB(Na, G) = Q
(√

Na

α

(
G∗ − βN−2/3

a − G
))

. (24)

where Q(.) is the tail probability of the standard normal dis-
tribution and the scaling parameters α and β will be obtained
based on the asymptotic analysis.

114

Our approach for derivation of α and β will be generally
based on [11]. Let d = k+ 1 and define the (d+ 1)-dimensional
vector z = (z0, z1, · · · , zd) = (r1, r2, ln−k+1, · · · , ln). We abuse
the notation slightly and use rj to refer to two different notions:
the number of edges connected to degree j slice nodes at time
x and the number of degree j slice nodes at time x. We distin-
guish the two by referring to them as the corresponding edge-
based and node-based quantities of rj, respectively. We exploit
similar definitions for li(x). Now define δ(zizj)(x) to be the
normalized covariance between the corresponding node-based
quantities of zi and zj at time x. The analysis of the finite di-
mensional Markov process over z then leads to the following
set of (d+1

2) + d + 1 coupled differential equations for δ(zizj),
where i, j ∈ {0, · · · , d} , i ≤ j:

dδ(zizj)(x)
dx

=
e(x)

x

[
f̂ (zizj)(x)

n
+

d

∑
k=0

δ(zizk)(x)
∂ f̂ (zj)(x)

∂zk

+
∂ f̂ (zi)(x)

∂zk
δ(zkzj)(x)

]
. (25)

Here, f̂ (zi)(x) represents the expected change of the corre-
sponding edge-based quantity of zi and f̂ (zizj)(x) represents
the covariance between the corresponding edge-based quanti-
ties of zi and zj at time x. f̂ (zi) and f̂ (zizj) are called local
drifts and local covariances and we refer to the differential
system (25) by covariance evolution. In order to solve the co-
variance evolution, local drifts, local covariances and the initial
conditions of the functions δzizj(x) at x = 1 need to be com-
puted for the formulation of CSA. For the derivation of these
quantities, we refer to [12, Theorem 4, Lemma 6].

α =−

√
δ(r1r1)(x)

n

(
∂r1(x; G)

∂G

)−1 ∣∣∣∣
x=x∗ ,G=G∗

,

β =−
(

f̂ (r1r1)(x)
n

)2/3 [d

∑
k=1

∂ f̂ (r1)(x)
∂zk

f̂ (zk)(x)
]−1/3

×
(

∂r1(x; G)

∂G

)−1 ∣∣∣∣
x=x∗ ,G=G∗

. (26)

V. SIMULATION RESULTS

In this section, we will compare our predictions of maximum
achievable channel load G∗ and probability of B-error PB with
the outcomes of simulations.
Table I, shows computation results of G∗ from Theorem 3 ver-
sus values of G∗ which are obtained from simulating the corre-
sponding CSA scheme under various settings of n and k. These
simulations are obtained with Na = 20000 and by averaging
over 2000 trials.

In Figure 3, we compare our non-asymptotic prediction from
(24) to simulation results in the waterfall region. All plots share
the same setting where n = 5 and k = 3. The solid curves
correspond to the computation of (24) using the scaling param-
eters α = 0.42362 and β = 0.8629 obtained from (26). The
dashed curves correspond to the probability of error obtained
from simulating over 2× 105 randomly chosen elements from
the CSA ensemble and averaging the results. The curves rep-
resent the plots for Na = 1000, 2000, 4000, 8000, 16000, 32000
with the leftmost curve corresponding to Na = 1000 and the
rightmost curve corresponding to Na = 32000. Moreover, the
vertical dashed line accord with G∗ = 0.5840 which is obtained
from (23). It can be seen that (24) accurately predicts the actual
probability or B-error with a very high precision.

TABLE I: Computed G∗ versus simulated G∗ under Na =
20000 by averaging over 2000 trials.

Parameters Simulated G∗ Computed G∗ from Theorem 3
n = 5, k = 2 0.737 0.7388
n = 6, k = 3 0.669 0.6699
n = 8, k = 5 0.545 0.5458

n = 12, k = 10 0.266 0.2664
n = 25, k = 4 0.459 0.4595

0.545 0.55 0.555 0.56 0.565 0.57 0.575 0.58 0.585 0.59

G

10
-2

10
-1

10
0

P
B

Figure 3: The probability of B-error PB in terms of G for
Na = 1000, 2000, 4000, 8000, 16000, 32000. All curves are ob-
tained using the parameters n = 5, k = 3. The solid and dashed
lines correspond to results of computations and simulations re-
spectively. The vertical dashed line shows G∗ = 0.5840. The
scaling parameters are α = 0.42362 and β = 0.8629.

REFERENCES

[1] N. Abramson, “The ALOHA system: another alternative for computer
communications,” in 1970 Fall Joint Computer Conf.

[2] E. Casini, R. D. Gaudenzi, and O. D. R. Herrero, “Contention resolution
diversity slotted ALOHA (CRDSA): An enhanced random access scheme
for satellite access packet networks,” IEEE Transactions on Wireless Com-
munications, vol. 6, no. 4, pp. 1408–1419, April 2007.

[3] G. Liva, “Graph-based analysis and optimization of contention resolu-
tion diversity slotted ALOHA,” IEEE Transactions on Communications,
vol. 59, no. 2, pp. 477–487, Feb 2011.

[4] X. Chen, T. Chen, and D. Guo, “Capacity of gaussian many-access chan-
nels,” IEEE Transactions on Information Theory, vol. 63, no. 6, 2017.

[5] Y. Polyanskiy, “A perspective on massive random-access,” in 2017 IEEE
International Symposium on Information Theory (ISIT), 2017.

[6] E. Paolini, G. Liva, and M. Chiani, “Coded slotted ALOHA: A graph-
based method for uncoordinated multiple access,” IEEE Transactions on
Information Theory, vol. 61, pp. 6815–6832, 2015.

[7] A. Vem, K. R. Narayanan, J. Cheng, and J. Chamberland, “A user-
independent serial interference cancellation based coding scheme for the
unsourced random access Gaussian channel,” in ITW 2017, 2017.

[8] M. Ivanov, F. Brännström, A. G. i Amat, and P. Popovski, “Broadcast
coded slotted ALOHA: A finite frame length analysis,” IEEE Transactions
on Communications, vol. 65, no. 2, pp. 651–662, Feb 2017.

[9] E. Sandgren, A. G. i Amat, and F. Brännström, “On frame asynchronous
coded slotted ALOHA: Asymptotic, finite length, and delay analysis,”
IEEE Transactions on Communications, vol. 65, no. 2, pp. 691–704, Feb
2017.

[10] A. Graell i Amat and G. Liva, “Finite length analysis of irregular rep-
etition slotted ALOHA in the waterfall region,” IEEE Communications
Letters, vol. 22, pp. 886–889, 05 2018.

[11] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-length
scaling for iteratively decoded LDPC ensembles,” IEEE Transactions on
Information Theory, vol. 55, no. 2, pp. 473–498, Feb. 2009.

[12] M. Fereydounian, X. Chen, H. Hassani, and S. Saeedi Bidokhti,
“Non-asymptotic coded slotted ALOHA,” Jan 2018,
https://www.seas.upenn.edu/ mferey/ms.pdf.

[13] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge Uni-
versity Press, 2008.

[14] N. C. Wormald, “Differential equations for random processes and random
graphs,” The annals of applied probability, pp. 1217–1235, 1995.

115

