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Abstract—In applications of remote sensing, estimation, and
control, timely communication is not always ensured by high-rate
communication. Oftentimes, it is observed that as the capacity
of a system is approached, delay increases significantly and so
does age of information – a metric recently proposed to capture
freshness and timeliness of information. This work proposes
decentralized age-efficient transmission policies for random access
channels with M transmitters and provides asymptotic results
for the age of information as M → ∞. Slotted ALOHA-type
algorithms are shown to be asymptotically age-optimal for arrival
rates below 1

eM
and far from optimal for larger arrival rates.

For larger arrival rates, novel decentralized age-based policies
are proposed that benefit from the availability of fresh packets
to reduce age of information. For arrival rates θ, θ = 1

o(M)
1, the

proposed algorithms provide a multiplicative gain factor of at
least two compared to the state-of-the-art schemes. We conclude
that it is beneficial to increase the sampling rate (and hence
the arrival rate) and transmit packets selectively based on their
“age-gains”, a notion defined in the paper. This is surprising and
contrary to common practice where the arrival rate is optimized
to attain the minimum AoI.

I. INTRODUCTION

Communication networks have witnessed rapid growth
in the past few decades. Today, state-of-the-art network com-
munication strategies are considered reliable and high speed;
nevertheless, they often do not perform satisfactorily for time-
sensitive applications. Age of information (AoI), introduced
in [1], [2], measures the freshness of information. AoI is a
function of both how often packets are transmitted and how
much delay they experience in the system. The metric of AoI
is of great importance in the Internet of Things applications
where timeliness of information is crucial, e.g. in monitoring
the status of a system or estimating a Markov process.

Assuming a first come first serve (FCFS) policy, the
works in [3], [4] show in queue theoretic setups that AoI is
minimized at an optimal update rate. Relaxing the restriction
of FCFS policies, [4], [5] propose packet management policies
that discard old packets and improve AoI in wide regimes of
operation. As a matter of fact, under the metric of AoI, rate and
reliability have little relevance in the design of communication
schemes. This is because AoI implicitly assumes that the
information content of the packets form a Markov process
and hence fresh packets render older packets obsolete. In the
past few years, various aspects of AoI have been studied in
communication networks: source and channel coding were
studied in [6]–[9], multi-hop networks were studied in [10]–
[12], and scheduling algorithms were studied in [13]–[20].

1o(·) represents the Bachmann-Landau’s little o notation.

We consider the problem of minimizing age of infor-
mation over a random access (RA) channel. In this setup,
centralized scheduling policies are not practical especially
in modern IoT applications where millions of devices are
involved. This is due to the very large scale of coordination
and communication that they entail. Furthermore, designing
decentralized transmission policies is challenging for two
reasons: (i) Transmitters cannot coordinate to avoid collision,
and (ii) Transmitters do not share information about their
arrivals and actions; it is hence not clear how they can concur
on which transmitter should be prioritized for transmission.
Considering that transmitters can only act based on their local
information, one might wonder if the transmitters can do any
better than stationary randomized policies. We design decen-
tralized policies in which transmitters exploit the available
collision feedback to track the local age of information at
the source and destination and make a transmission decision
accordingly.

Towards designing distributed algorithms for minimizing
age of information, [21], [22] analyze stationary randomized
policies under the assumption that sources actively generate
packets in every time slot. For the more realistic scenario
where packets are generated at random times, [23] analyzes
round-robin scheduling with and without packet management
and also presents partial results for stationary randomized poli-
cies (without explicit characterizations). In [24], we provide a
closed form expression for AoI under stationary randomized
policies, also accounting for the stochastic nature of arrivals
which was disregarded in [21], [22]. In [25], it is additionally
assumed that nodes are provided with carrier sensing capabil-
ities and a distributed scheme is proposed and shown to have
good performance in simulations. Nevertheless, [25] does not
address how the parameters of the scheme are to be designed;
nor does it provide theoretical guarantees on the attained AoI.

In this work, we design decentralized age-based transmis-
sion policies and provide asymptotic analytical results on the
achievable AoI in interesting regimes of operation. The major
part of this paper deals with random access technologies such
as slotted ALOHA but extensions to general random access
techniques are also addressed at the end. The contributions
of this paper are as follows. In presenting our results below,
we assume large symmetric networks in which we have M
transmitters and each transmitter has the arrival rate θ.
• We derive lower bounds on the normalized AoI in terms of

the capacity of the underlying channel and show the asymp-
totic tightness of them in interesting regimes of operation.
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• We prove that when the sum arrival rate Mθ is below the
infamous critical point 1

e , the normalized age performance
of the slotted ALOHA algorithm is approximately 1

Mθ in
the limit of large M and it is optimal.

• The maximum sum-rate of slotted ALOHA is provably 1
e .

Hence, as the sum arrival rate increases beyond this critical
point, the age of slotted ALOHA and its unit-buffer-size
variants such as [21], [23] increase. We first introduce the
age-gain of a packet to quantify how much it would reduce
the instantaneous AoI upon successful delivery. We then
propose two age-based thinning methods (based on adaptive
and stationary thresholding) in which transmitters disregard
packets in order to mimic an effective (sum) arrival rate
equal to 1

e . In particular, we develop a threshold policy
that can be implemented in a distributed manner at the
transmitters and in which only packets that offer large age-
gains are transmitted. In the limit of M → ∞, using the
stationary thinning method, we prove that the normalized
age is approximately e

2 for all θ = 1
o(M) .

• Finally, we demonstrate applications of our proposed thin-
ning mechanism, more generally, for other random access
technologies. In particular, we prove that given a technology
that can achieve the sum-rate C, age-based thinning methods
attain the normalized age of 1

2C . In particular, using CSMA,
we approach optimality in the limit of large M .

II. SYSTEM MODEL AND NOTATION

We consider a wireless symmetric architecture where a
controller monitors the status of M identical source nodes
over a shared wireless medium. Let time be slotted. At the
beginning of every slot k, k = 1, 2, . . ., the source node i,
i = 1, . . . ,M , generates a new packet encoding information
about its current status with probability θ and this packet be-
comes available at the transmitter immediately. We denote this
generation/arrival process at the transmitter by Ai(k), where
Ai(k) = 1 indicates that a new packet is generated at time
slot k and Ai(k) = 0 corresponds to the complementary event.
New packets are assumed to replace undelivered older packets
at the transmitters, relying on the fact that the underlying
processes are oftentimes Markovian. It is straightforward to
show that this assumption holds at no loss of generality when
AoI is to be minimized and the buffer size can be assumed to
be one (see [24, Appendix A]).

The communication medium is modeled by a collision
channel: If two or more source nodes transmit at the beginning
of the same slot, then the packets collide and do not get
delivered at the receiver. We use the binary variable di(k)
to indicate whether a packet is transmitted from source i
and received at the destination in time slot k. Specifically,
di(k) = 0 if source i does not transmit at the beginning of
time slot k or if collision occurs; di(k) = 1 otherwise.

We assume a delay of one time unit in the delivery of
packets, i.e., packets are transmitted at the beginning of a time
slot and, if there is no collision, they are delivered at the end
of the same slot. We assume that all transmitters are provided
with channel collision feedback at the end of each time slot.

Specifically, at the end of time slot k, c(k) = 1 if collision
happened and c(k) = 0 otherwise. In the event of collision,
the involved transmitters can keep the undelivered packets and
retransmit them according to their transmission policy.

Our objective is to design distributed transmission policy
to minimize the age of information (defined below). A dis-
tributed policy is one in which the action of transmitter i at
time k is dependent only on its history of actions, the arrival
process {Ai(j)}kj=1, and the collision feedback {c(j)}k−1j=1 .

We extend the definition of AoI a bit further to also
account for the aging of information at the transmitter (due
to the stochastic nature of arrivals). Consider a source-
destination pair. Let {k′`}`≥1 denote the delivery times of
the received packets and {k`}`≥1 denote the corresponding
generation times. At time τ , denote the index of the last
generated (resp. delivered) packet by ns(τ) = max{`|k` ≤ τ}
(resp. nd(τ) = max{`|k′` ≤ τ}). The source’s AoI is w(k) =
k − kns(k) and the destination’s AoI is h(k) = k − knd(k).

Following this definition, let hi(k) (resp. wi(k)) denote
the destination’s (resp. source’s) AoI at time slot k with respect
to source i. The age hi(k) increases linearly with k when
there is no packet delivery from source i and it drops with
every successful delivery to a value that represents how old
the received packet is; in our framework, this would be the
corresponding source’s AoI (in previous time slot) plus one.

For any transmission policy π, the performance metric
that we consider is the Normalized Expected Weighted Sum
AoI (NEWSAoI) defined below2:

Jπ(M)= lim
K→∞

E[JπK ], JπK =
1

M

( 1

MK

M∑
i=1

K∑
k=1

hπi (k)
)
. (1)

III. LOWER BOUND

We start by finding two lower bounds on the achievable
age performance. The first lower bound is derived by assuming
that there is always a fresh packet to be transmitted. The
second lower bound is derived by assuming that all packets are
delivered instantaneously upon their arrivals (with unit-time
delays, but without collisions). We will see that the former
is asymptotically tight as θ approaches 1 and the latter is
asymptotically tight when θ is small (i.e., when the inter-arrival
time is the dominant term of the inter-delivery time).

Fix a large time horizon K and look at the packets of
source i. Let Ni(K) denote the number of delivered packets
(from source i) up to and including time slot K. Now consider
the mth and (m+1)th deliveries at the receiver and denote the
delivery time of them by Ti(m) and Ti(m+ 1), respectively.
The inter-delivery time Ii(m) = Ti(m+ 1)−Ti(m) is the time
between these two consecutive deliveries. Upon arrival of the
mth delivered packet at the receiver, the age of information at
the receiver drops to the value Di(m) which represents how

2Since age increases linearly with the number of source nodes M when θ
is fixed, we further normalize by M to look at the slope of the increase.
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much delay the packet has experienced in the system. Now
define Γi(m) as the sum of hi(k), k ∈ [Ti(m), Ti(m+ 1)):

Γi(m) =

Ti(m)+Ii(m)−1∑
k=Ti(m)

hi(k) (2)

=
1

2
I2i (m)− 1

2
Ii(m) +Di(m− 1)Ii(m). (3)

It follows that in the limit of large K, we have

Jπ(M) = lim
K→∞

E

 1

M2

M∑
i=1

1

K

Ni(K)∑
m=1

Γi(m)

 . (4)

Using this formulation, we next lower bound NEWSAoI.
Let CRA denote the sum-capacity of the underlying random
access channel. Note that in the limit of large K, Ni(K)

K is the
throughput of transmitter i and

lim
K→∞

M∑
i=1

Ni(K)

K
≤ CRA. (5)

Using (5) and the lower bound derivations in [13], [26], we
prove the following propositions (see [24] for the proofs).

Proposition 1. For any transmission policy π, the normalized
age in (1) is lower bounded as follows:

Jπ(M) ≥ 1

2CRA
+

1

2M
. (6)

Proposition 2. For any transmission policy π, the normalized
age in (1) is lower bounded as follows:

Jπ(M) ≥ 1

Mθ
. (7)

Let us give an example of how Proposition 1 can be
utilized. Note that CRA is not known in general. Neverthe-
less, any upper bound on CRA gives a lower bound on the
normalized age. Based on [27], the capacity of the random
access channel with collision feedback, in the limit of large
M , is upper bounded by limM→∞ CRA ≤ 0.568 and hence

lim
M→∞

Jπ(M) ≥ .88. (8)

Remark 1. The lower bound in (8) does not assume CSMA
capabilities. For CSMA, we have CCSMA ≤ 1 and hence

Jπ(M) ≥ 1

2
+

1

2M
. (9)

We show the asymptotic optimality of this bound in Sec-
tion IV-E as M →∞.

IV. DECENTRALIZED AGE-BASED POLICIES

Consider two regimes of operation:
• The regime of infrequent arrivals, where θ ≤ 1

eM ,
• The regime of frequent arrivals, where θ > 1

eM .
For simplicty and clarity of ideas, we will develop our
framework for the slotted-ALOHA random access technology,
but will expand on how it generalizes to other random access
technologies in Section IV-E.

The basic idea of slotted ALOHA is as follows: At every
time slot k, transmitters send their packets immediately upon
arrival unless they are “backlogged” after a collision in which
case they transmit with a backoff probability. Here, we focus
on Rivest’s stabilized slotted ALOHA. In this algorithm, all
arrivals are regarded as backlogged nodes that transmit with
the backoff probability pb(k). Note that since buffer sizes are
assumed to be one, the number of backlogged nodes is at most
M . Let c(k) = 1 denote the event that collision occurred at
time k and c(k) = 0 denote the complementary event. The
backoff probability is calculated through a pseudo-Bayesian
algorithm based on an estimate of the number of backlogged
nodes n(k) :

pb(k)=min{1,
1

n(k)
}

n(k)=

{
min{n(k − 1) +Mθ + (e− 2)−1,M} if c(k)=1

min{max{Mθ, n(k − 1) +Mθ − 1},M} if c(k)=0.

(10)

Performing slotted ALOHA, transmitters can reliably
send packets with a sum-rate up to 1

e in a distributed manner.
Assuming M → ∞, the probability of delivering a packet in
each time slot is 1/e, the probability of collisions is 1− 2/e,
and the probability of having an idle channel is 1/e. Note that
since Mθ ≤ 1

e , the expected total number of decentralized
packets in every time slot is Mθ. We find the asymptotic
NEWSAoI of any stabilized slotted ALOHA algorithm in
Theorem 1 below (and refer to [24] for the proof).

Theorem 1. Suppose θ ≤ 1
eM , and define η = limM→∞Mθ.

Any stabilized slotted ALOHA scheme achieves

lim
M→∞

JSA(M) =
1

η
.

Moreover, (stabilized) slotted ALOHA are asymptotically op-
timal in terms of NEWSAoI.

A. Age-Based Thinning

When the arrival rate θ increases beyond 1
eM , slotted

ALOHA is not stablized anymore, leading to a large delay and
age. Noting that the maximum rate that ALOHA can support
is 1

eM per source, a natural question rises: How could we
attain a smaller age of information at the destination when
θ > 1

eM ? A naive solution to the above question is to have
the transmitters randomly drop packets and perform at the
effective rate 1

eM . But as we argued in Theorem 1, this only
leads to NEWSAoI ≈ e which means that we would not
benefit from the frequency of fresh packets to reduce AoI.

To benefit from the availability of fresh packets, we
devise an age-based transmission policy in which transmitters
prioritize packets that have larger age-gains. In particular, in
each time slot k, transmitters find a proper threshold T(k) in
order to distinguish and prioritize packets that offer high age-
gains. The core idea is to still use the channel at its capacity
(depending on the available technology) but to carefully select,
in a distributed manner, which packets to send in order to
minimize age.
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Note that no matter how the transmission policy is
designed, since it is decentralized, it may happen that multiple
transmitters try to access the channel at the same time, leading
to collision. For simplicity and clarity of ideas, we will restrict
attention to slotted ALOHA techniques to resolve such colli-
sions. More general techniques are discussed in Section IV-E.

Consider transmitter i at time k and recall the definition
of hi(k) and wi(k) from Section II. We introduce the age-
gain of (the packet of) transmitter i to quantify how much the
instantaneous receiver’s AoI reduces upon successful delivery
from transmitter i. Denote this quantity by δi(k):

δi(k) := hi(k)− wi(k). (11)

At time k, we propose to discard a fresh packet at
transmitter i if 0 ≤ δi(k) < T(k) and to keep it otherwise.
We refer to this process as thinning and note that this is done
based on the local AoI at the source/destination. The main
underlying challenge is in the design of T(k). We propose two
algorithms: an adaptive method of calculating T(k) for each
time slot based on the local collision feedback and a fixed
threshold value T∗ (designed in advance). In the remainder of
this section, we assume that θ > 1

eM , M is large, and we use
the following definition.

Definition 1. Transmitter i is said to be an m-order node if
δi(k) = m. We use `m(k) to denote the expected fraction of
m-order nodes in time slot k, i.e.,

`m(k) = E[
1

M

M∑
i=1

1{δi(k)=m}]. (12)

and the node distribution (of the age-gain) at time k is given
by {`m(k)}∞m=0 .

B. Adaptive Thresholding

Let T(k) be the threshold for decision making in slot
k. We propose to choose T(k) such that it imposes an
effective arrival rate equal to 1

eM per transmitter. Note that
{`m(k)}∞m=0 is unknown in decentralized systems. We hence
find an estimated of it {ˆ̀m(k)}∞m=0 in every time slot. We
summarize the process as

{ˆ̀m(k)}∞m=0 = F (c(k), {ˆ̀m(k − 1)}∞m=0) (13)

where F (·) is a function which will be determined later. In
particular, we design T(k) in three stages: The first stage
corresponds to the beginning of the time slot when new
packets may arrive and replace the old packets. We denote
the time just before the arrival of new packets by k− and
the time just after the arrival of packets by k+. In the
second stage, transmitters determine the threshold T(k) based
on {ˆ̀m(k+)}∞m=0. Transmissions happen according to the
designed threshold T(k). In the third stage, at the end of time
slot k when collision feedback is also available, the estimated
node distribution is updated. We slightly abuse notation and
denote the final estimate of the node distribution at the end of
time slot k by {ˆ̀m(k)}∞m=0.

Stage 1: Suppose the estimated node distribution {ˆ̀m(k−
1)}m is known at the beginning of slot k before the arrival of
new packets. The expected fraction of m-order nodes, m ≥ 0,
that receive new packets is θ ˆ̀

m(k − 1). The order of these
nodes increase and the expected node distribution changes to
{ˆ̀m(k+)}m. Let am(k) denote the expected fraction of nodes
that have just become m-order at time k+. It is straightforward
to show

am(k) = θ2
m−1∑
j=0

`j(k − 1)(1− θ)m−j−1 (14)

`m(k+) =

{
(1− θ)`m(k − 1) m = 0
(1− θ)`m(k − 1) + am(k) m ≥ 1.

(15)

We define âm(k) as the estimation of am(k), which can be
obtained by (14) and (15) by replacing `m(k), `m(k+) with
ˆ̀
m(k), ˆ̀

m(k+), respectively.
Stage 2: The threshold T(k) is determined based on

{ˆ̀m(k+)}m. We design T(k) such that the effective arrival
rate of packets that have an age-gain above T(k) is close to
1
e . In other words, we thin the arrival process. The critical
point 1

e is the maximum sum arrival rate that ALOHA can
support. So if the effective sum arrival rate falls below 1

e , we
do not use the available throughput and if we operate above
1
e , we may incur additional collisions and delay.

Recall that âm(k) is the estimated expected fraction of
nodes that have just become m-order at time k+ (coming
from lower order nodes). So the total (estimated) fraction
of nodes whose age-gain would, for the first time, pass the
threshold T(k) is

∑
m≥T(k) âm(k). We propose to choose T(k)

as follows:

T(k) = max

t|∑
m≥t

âm(k) ≥ 1

eM

 . (16)

Remark 2. The threshold T(k) is computed based on {ˆ̀m(k−
1)}. Note that {ˆ̀m(k − 1)} is an estimate of the node
distribution and as we describe in stage 3, this estimate is
found recursively by computing the expected node distribution
condition on the estimated distribution in the previous time
slot and the available feedback.

Stage 3: Once the threshold T(k) is determined, each
transmitter verifies locally if its age-gain is above the specified
threshold. If so, it mimics slotted ALOHA and transmits its
packet with probability pb(k) defined in (10) where Mθ is
replace by the effective arrival rate 1

e . If collision happens or if
all nodes abstain from transmitting, then AoI at the destination
increases by 1 for all sources. If only one node transmits, then
its packet will be delivered successfully and its age at the
destination drops to the source’s AoI.

C. Estimating the node distribution

It remains to estimate ˆ̀
m(k) at the end of time slot k,

which will serve in computing T(k+ 1) in the next time slot.
We assume that at the end of time slot k, all transmitters are
provided with collision feedback from the channel and we
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hence consider two cases separately: c(k) = 0 and c(k) = 1.
If c(k) = 1, the order of nodes will not change:

ˆ̀
m(k) = ˆ̀

m(k+), m ≥ 0. (17)

If c(k) = 0, we compute the conditional expectation of
{`m(k)}m, condition on `m(k+) and c(k) = 0, to find the
following update rule (see [24] for details):

ˆ̀
0(k) =ˆ̀

0(k+) +

∞∑
m=T(k)

min
(rm(k)

2M
, ˆ̀
m(k+)

)
ˆ̀
m(k) =ˆ̀

m(k+), 1 ≤ m ≤ T(k)− 1

ˆ̀
m(k) =

(
ˆ̀
m(k+)− rm(k)

2M

)+

m ≥ T(k).

(18)

F (·) defined in (13) is given in (25) in [24]. Every source uses
the same update rule F (·), so T(k) is the same for all sources
in every time slot.

Remark 3. From (25) in [24], we updated ˆ̀
m(k) as a function

of ˆ̀
m(k− 1) and the collision feedback c(k), hence the name

adaptive. If we update `m(k) by the conditional expectation
of `m(k), condition on `m(k+) but not on c(k), we will find
a fixed limiting threshold T∗ discussed next.

D. Stationary Thresholding

A simple variant of the age-based thinning method is
found when the threshold T(k) = T∗ is fixed throughout
the transmission phase. In particular, we design T∗ ahead of
time based on (16) as a function of the node distribution in
the stationary regime. By doing so, we cannot benefit from
the collision feedback to adaptively choose T(k). However,
this framework is preferable for deriving analytical results. In
particular, we show in [24] that T∗ takes the following form:

T∗ = max
(
1, beM − 1

θ
+ 1c

)
. (19)

Our stationary age-based thinning method (followed by
slotted ALOHA) is summarized in Algorithm 1 and its age-
performance is analyzed in Theorem 2 next.

Algorithm 1 Stationary Age-based Thinning (SAT)

Set the time horizon K.
Set initial points: hi(0) = 1, wi(0) = 0 for i = 1, 2, · · · ,M ;
c(0) = 0; T (0) = 1; pb(0) = 1; n(0) = 0; k = 1.
Calculate T∗ = max

(
1, beM − 1

θ + 1c
)
.

repeat
Step 1: For transmitter i: compute δi(k) = hi(k)−wi(k);
If δi(k) ≥ T∗, transmit packet with probability pb(k).
Otherwise, remain silent.
Step 2: Calculate pb(k) using (10) in which Mθ is
replaced by min(Mθ, e−1).

until k = K
Calculate JSATK = 1

M2

∑M
i=1

1
K

∑K
k=0 hi(k).

Theorem 2. For any θ = 1
o(M) , the asymptotic NEWSAoI of

Algorithm 1 is given by

lim
M→∞

JSAT (M) =
e

2
.

E. Extensions to Other Random Access Technologies

So far, we restricted attention to the slotted ALOHA
scheme. Theorem 3 formalizes extensions of our thinning
framework to other RA techniques. Consider a random access
policy π that does not employ coding across packets. All
existing collision avoidance and resolution techniques such as
[28]–[31] fall into this class. Now develop a variant of the
transmission policy π in which only the most recent packet
of each transmitter is preserved and all older packets are
discarded. Denote this policy by π(1). Define Cπ

(1)

M as the
maximum sum throughput when applying the transmission
policy π(1) in a system with M sources, and denote the limit,
when M →∞, by Cπ

(1)

. We have the following general result
(see [24] for the proof).

Theorem 3. Suppose θ = 1
o(M) and choose T∗ =

max
(
1, b M

Cπ
(1) − 1

θ + 1c
)
. The stationary age-based thinning

method using T∗, followed by the transmission policy π(1),
attains the following normalized age in the limit of large M :

lim
M→∞

JGSAT (M) =
1

2Cπ(1)
.

V. NUMERICAL RESULTS

In this section, we verify our findings through simula-
tions. Figure 1a shows the normalized age under adaptive
and stationary age-based transmission policies for M =
50, 100, 500. For stationary age-based policies, the normalized
age converges to e

2 when M is large, validating our find-
ings in Theorem 2. The performance of the adaptive policy
is better than that of the stationary age-based policy for
θ > 1

M and the efficacy (the gap between the two curves)
increases with θ. Since the maximum sum throughput of
slotted ALOHA is 1

e , one may ask if this contradicts the lower
bound of Proposition 2. To answer this question, we remark
that the adaptive age-based transmission policy is not a slotted
ALOHA scheme and therefore the maximum throughput of
slotted ALOHA would not apply. As a matter of fact, Fig. 1b
shows that the throughput of the scheme increases beyond 1

e
with θ, supporting Proposition 1. One can also observe that
adaptive policy performs worse than the stationary policy for
θ ≤ 1

M . We believe this is because the estimation of the node
distribution {ˆ̀m(k)}m≥0 is imprecise for small θ.

Finally the age-performance of our proposed distributed
age-based policies are compared with the lower bounds of
Section III, state-of-the-art distributed schemes such as [21],
as well as centralized Max-Weight policies such as [15]. For
clarity, we consider two regimes of θ: θ ∈ ( 1

M , 1] (see Fig. 1c),
and θ ∈ (0, 1

M ] (see Fig. 1d). Fig. 1d, in particular, shows
that when θ ≤ 1

eM , the normalized age of slotted ALOHA
coincides with centralized Max-Weight policies and the lower
bound of Proposition 2. When θ increases beyond 1

eM ,
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Fig. 1: Normalized age NEWSAoI and success transmission probabilities

our proposed age-based thinning methods provide significant
gains compared to randomized stationary and slotted ALOHA
schemes. Finally, we numerically observe that the normalized
age of the centralized Max-Weight policy is approximately
attained by stationary age-based thinning in CSMA.

Note that the proposed algorithms not only utilize fully
channel capacity, but minimize NEWSAoI. If we only con-
sider policies with maximum throughput, for example, slotted
ALOHA and its variants, the NEWSAoI explodes up with
time.
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