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ABSTRACT

TIME-CRITICAL DECISIONS WITH REAL-TIME INFORMATION EXTRACTION

Xingran Chen

Shirin Saeedi-Bidokhti

The Internet of Things and the next-generation networks have led to the generation, dissemination,

and transformation of a massive amount of real-time information. The information is often governed

by processes that evolve over time and/or space (e.g., on an underlying network). This thesis

will develop theoretical foundations and algorithmic designs for time-critical decisions with real-

time information extraction in networked systems and consider applications such as estimation and

network coding in IoT, and testing and isolation for COVID-19.

In the first part, we study the timeliness of information transfer in communication networks. Time-

liness was first captured and quantified in point-to-point channels through the metric of age of

information (AoI) and has since become a new design criterion in communications. In this thesis,

we go beyond point-to-point channels and consider multiple access networks with multiple senders,

broadcast networks with multiple receivers, as well as general ad-hoc networks.

In Chapter 2, we study the problem of age minimization in random access channels. This problem

is essential in the remote estimation and control of processes that are observed from decentralized

sources in wireless networks. Scheduling policies in multiple access channels is no longer realistic

due to a huge amount of communication and coordination among sources. We propose decentralized

policies to minimize the time-average AoI and provide performance guarantees for them. In particu-

lar, we show that in the regime of low packet arrival rate (< 1
eM , whereM is the number of sources),

the standard slotted ALOHA policy is asymptotically age-optimal as the number of sources gets

large. However, when the packet arrival rate gets larger, the age performance for slotted ALOHA

deteriorates and diverges when the time horizon is large. To overcome the challenge, we propose the

notion of age-gain of a packet to quantify how much the packet will reduce the instantaneous age
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of information at the receiver side upon successful delivery. We then utilize this notion to propose

a transmission policy in which sources act in a decentralized manner based on the age-gain of their

available packets. Each source sends its latest packet only if its corresponding age-gain is beyond

a certain threshold which could be computed adaptively using the collision feedback or found as a

fixed value analytically in advance. In the regime where the packet arrival rate is relatively large

(= 1
o(M)), we achieve the age-performance of e2 , which provides a multiplicative gain of at least two

compared to the minimum age under slotted ALOHA (minimum over all arrival rates). We conclude

that it is beneficial to increase the sampling rate (and hence the arrival rate) and transmit packets

selectively based on their age-gain. This is surprising and contrary to common practice where the

arrival rate is optimized to attain the minimum AoI.

In Chapter 3, we study the problem of estimation error minimization in random access channels.

Real-time sampling and estimation for autoregressive Markov processes is considered. Two general

classes of policies are investigated: oblivious policies and non-oblivious policies. In the former class,

decision-making is independent of the processes that are monitored, and we prove that minimizing

the expected time-average estimation error is equivalent to minimizing the expected time-average

AoI. In the latter class, decision-making depends on the physical processes. We first provide a

closed-form expression for the estimation error that is a function of the peak age, the transmis-

sion delay, a term which we call the silence delay, as well as the process realization. We then

approximately propose an optimal thresholding policy with the threshold σ
√
eM (where M is the

number of sources and σ is the standard deviation in physical processes) and the resulting nor-

malized estimation error is e
6σ

2. The proposed non-oblivious thresholding policy provides a 3-fold

improvement compared to age-based oblivious policies, and the age-based oblivious policy provides

a 2-fold improvement compared to the state-of-the-art. Simulation results verify that the proposed

decentralized thresholding policy outperforms all state-of-the-art policies, and the performance is

very close to that of centralized greedy policies.

The formulation and approaches outlined in Chapters 2 and 3 are specific to the simple network

topology of random multi-access channels. We go beyond random access channels in Chapter 4
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and study the problems of age minimization and estimation error minimization in ad-hoc networks.

There are M statistically identical sources in an ad-hoc network, where every source transmits

packets to connected sources. Collisions happen if two or more sources in proximity simultaneously

transmit packets. Here, we seek to design decentralized policies for each source to decide when to

sample, whom to communicate with, and what to transmit to minimize the time-average estimation

error and/or age. To tackle the multi-dimensionality of the space of decision-making and to capture

the complex topologies of wireless networks, we propose a graphical reinforcement learning frame-

work since theoretical methods are no longer tractable. The proposed framework is proven to be

permutation equivalent and enjoys desirable transferability property. In particular, the transmis-

sion policies trained on small- or moderate-size networks can be executed on large-scale topologies.

We also demonstrate, via numerical experiments, that (i) the transmission policies obtained by the

proposed framework outperform state-of-the-art baselines, (ii) the trained transmission policies are

transferable to larger networks, and their performance gains increase with the number of agents, and

(iii) the training procedure can withstand non-stationarity even if we utilize independent learning

techniques.

In Chapter 5, we investigate the tradeoffs between timeliness and communication rate in broadcast

networks. To shed light on the tradeoffs, we first propose a novel framework of network AoI on the

broadcast channels under a transmission mechanism with coding. We then propose two classes of

coding policies: coding policies with uncoded caching and coding policies with coded caching. Two

general lower bounds and an upper bound are derived on the time-average AoI for any transmission

policy. The bounds are functions of generation rates, erasure probabilities, and target rate con-

straints. Simulation results reveal that (i) coding is beneficial, and the benefits increase with the

number of users; (ii) a good approximation of proposed policies is obtained based on the maximum

clique size of the information graph; (iii) the tradeoff between rate and age exists, which implies

that the system has to sacrifice age to achieve a higher rate.

Going beyond age minimization in wireless networks, in the second part of this thesis, we study

the problem of testing and control of spread processes. This problem is another instance of time-
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critical decision-making with real-time information extraction. In Chapter 6, the spread of an

undesirable contact process, such as an infectious disease (e.g., COVID-19), is contained through

testing and isolation of infected nodes. The temporal and spatial evolution of the process (along with

containment through isolation) render such detection as fundamentally different from active search

detection strategies. Through an active learning approach, we design testing and isolation strategies

to contain the spread and minimize the cumulative infections under a given test budget. We prove

that the objective can be optimized, with performance guarantees, by greedily selecting the nodes

to test. We further design reward-based methodologies that effectively minimize an upper bound on

the cumulative infections and are computationally more tractable in large networks. These policies,

however, need knowledge about the nodes’ infection probabilities which are dynamically changing

and have to be learned by sequential testing. We develop a message-passing framework for this

purpose and, building on that, show novel tradeoffs between the exploitation of knowledge through

reward-based heuristics and the exploration of the unknown through carefully designed probabilistic

testing. The tradeoffs are fundamentally distinct from the classical counterparts under active search

or multi-armed bandit problems (MABs). We provably show the necessity of exploration in a stylized

network and show through simulations that exploration can outperform exploitation in various

synthetic and real-data networks depending on the parameters of the network and the spread.
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CHAPTER 1

Introduction

1.1. Backgrounds and Motivations

The next-generation (NextG) wireless communications and the Internet-of-Things (IoT) will im-

merse wireless communication in systems that interact with the physical world. Examples range

from vehicle-to-vehicle communication for autonomous driving, to smart cities, and public health.

These applications will be enabled by separate developments in low-latency high-reliability commu-

nication, massive connections between low-power devices, and increased data rates. Unprecedented

platforms have been provided for the generation, dissemination, and collection of huge real-time

information. The information is often governed by processes that evolve over time and/or space

(e.g. on an underlying network).

To achieve optimal (long-term) design criteria in time-critical applications, it is vital to make in-

formed decisions that extract real-time information about the system (e.g. its current state). Such

real-time information is subsequently used for decision-making. So decisions have a dual role: on

one hand, decisions change the state of a system; on the other hand, decisions bring about timely

observations of a system, which is useful for future decisions. For example, real-time decisions

for minimizing time-average estimation error introduce instantaneous estimation errors, which is

helpful for decision-making in the next time slot. So, it is important to propose efficient strategies

carrying real-time information extraction and then achieve desired objectives. A few examples of

such settings are as follows. In applications of remote sensing, estimation, and control in wireless

networks, consider an IoT network with plenty of small sensors, which can collect information about

some underlying physical processes to communicate with a control center. How should we devise

sampling and communication strategies to estimate the underlying processes in a timely manner?

In an epidemic network, an infectious disease (e.g. COVID-19) spread among individuals, and this

disease process is formed by individuals’ everyday interactions. How to design efficient testing and

control strategies to track or contain the disease?
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The universal challenge in all these problems is how to sequentially make decisions using real-

time (partial) observations of the process as well as the network. Inherent in these problems, the

timeliness plays a significantly important role, which leads to a contrast between optimal and timely

information extraction. Information theory traditionally seeks fundamental tradeoffs and optimal

solutions to maximally extract information. Considering asymptotic performances, these solutions

have been less successful in challenging settings where data is collected in real-time from information

sources and the timeliness of communication/estimation/detection matters. From the perspective

of learning, these settings are often studied in reward-based formulations such as Markov decision

processes (MDPs) or partially observable MDPs where there is a notion of the instantaneous value

of an action referred to as reward or regret (e.g. instantaneous estimation error). Such reward-

based approaches have been relatively successful in centralized settings by providing approximate

solutions. But in general, especially in settings where decision-making is decentralized or based on

partial or noisy observations, solutions are available only for special cases. This thesis has developed

new frameworks for (decentralized) sequential decision-making in multi-agent networks.

1.2. Outline of the Thesis

Information freshness is a new system design criterion motivated by this observation that information

usually has the highest value when it is fresh. For example, think about system status updates or

samples that are taken from a Markov process: Once a new update packet or sample packet is

given, all older packets and the information they carry become insignificant. Information freshness

is quantified by the metric of the age of information (AoI) as introduced in [1, 2] and it captures both

how often information is transmitted and how much delay information experiences in a network.

To keep the information freshest is an everlasting goal in time-sensitive applications, such as cyber-

physical systems, the Internet of Things, smart cities, as well as healthcare systems.

In Chapter 2, we investigate the information freshness in random access channels, whereM identical

source nodes transmit information updates over a shared wireless medium. In every time slot, each

node generates a packet by a Bernoulli process, and decides, only depending on its local information,

whether or not to transmit its packets to the common receiver. If more than 2 nodes transmit packets
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in the same time slot, then collisions happen, and no packets can be delivered successfully. The aim

is to minimize the time-average AoI in the network by proposing decentralized transmission policies.

The main challenge arises as follows: if nodes transmit packets at a low rate, the information would

not be fresh at the receiver, while if nodes transmit packets frequently with a high rate, many

fresh packets are transmitted but may collide leading to the staleness of information at the receiver.

Thus, we need to select smartly which nodes can transmit packets and design effective decentralized

mechanisms. To solve this challenge, we propose age-based policies, with performance guarantees,

to minimize AoI and show that contrary to common practice it is beneficial to increase the sampling

rate (and hence the arrival rate) and transmit packets selectively based on their age-gain.

Having designed decentralized policies that minimize AoI in Chapter 2, a natural question arises:

can we incorporate the AoI into other objective functions and in particular the estimation error? We

ask if AoI is a good proxy for the estimation error and if age-based policies perform well concerning

the estimation error. Chapter 3 establishes this bridge and goes beyond AoI minimization. We

consider the problem of real-time sampling and estimation over reliable and unreliable random

access channels with M Markov (autoregressive) physical processes (sources). These processes are

to be observed, sampled, and communicated wirelessly with a fusion center for timely estimation.

Considering applications in IoT and CPS, it is not realistic to assume a central scheduler that

monitors all the sensors for decision-making; we, therefore, seek to design near-optimal decentralized

sampling and communication strategies. In other words, nodes decide, in a decentralized manner,

when to sample and transmit to best utilize the network, and the controller has a good estimate of

the process at each time. We propose two classes of policies: oblivious policies in which decision-

making is independent of the source realizations, and non-oblivious policies in which sources are

observed causally for decision-making and establish an analytic framework that proves a 3 fold

improvement in performance compared to state of the art.

Chapter 2 and Chapter 3 discuss the simple case of random access channels. In Chapter 4, we

go beyond random access channels and seek policies that minimize age and/or estimation error in

ad-hoc networks. This brings about a new challenge and that is the inherent network topology.
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In particular, we extend the minimization of the AoI and/or estimation error problems to general

ad-hoc networks, where every source can be either a receiver or sender, and collisions happen when

sources in proximity transmit together simultaneously. Each network source has to make decisions

in a decentralized manner: when to transmit, who to communicate with, and what to transmit.

Here, the analytical solutions are no longer tractable. We hence propose to use a multi-agent

reinforcement learning framework in which each source is modeled by a graph neural network, trained

in a centralized or decentralized manner and executed in a decentralized manner to minimize the

AoI and/or estimation error. We make this approach practical for large-scale networks by proving

the transferability property for our proposed solution.

While freshness of information is important in many applications oftentimes, it is not the only design

criteria of interest. In particular, it is important to understand the fundamental tradeoffs between

the AoI and other performance metrics such as communication rate. We investigate this problem in

an erasure broadcast network with M senders and M receivers. We ask (i) if coding is beneficial to

the reduction of the AoI; (ii) if there exist tradeoffs between the AoI and communication rate. We

propose a novel framework of network AoI for the broadcast channels under transmission protocols

with coding. This allows us to utilize the optimality of coding and the efficiency of scheduling.

Finally, we investigate timely inference and detection for processes that not only evolve over time but

also on an underlying network, such as the spread of an infectious disease in a contact network, the

spread of a computer virus on the world wide web, or the spread of misinformation in social networks.

How to contain the spread as soon as possible is another instance where timeliness is crucial because

infected nodes who are not isolated may infect others. Our goal is to develop sequential and adaptive

learning frameworks for deciding which nodes to “test” depending on observations. In Chapter 6,

we consider one of the processes that evolve both temporally and spatially, COVID-19 infection. It

evolves in time (e.g. through different stages of the disease for an infected individual) and over a

contact network and its spread can be contained by testing and isolation. It is vital to judiciously

decide who should be tested and isolated in the presence of limitations on the number of individuals

who can be tested and isolated on a given day, and contain the spread as soon as possible. We
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propose a testing and isolation strategy that capture exploitation-exploration tradeoffs on networks

to contain and control the spread of disease, i.e., minimize cumulative infections. And we further

show that exploration is necessary.

1.3. Summary of Contributions

Contributions in Chapter 2 In presenting our results below, we assume large symmetric net-

works in which we have M transmitters and each transmitter has an arrival rate θ. The key ideas

are summarized in Table 1.1.

Algorithms or Bounds Key ideas Normalized age performance (M →∞)
Proposition 1 There is always a fresh packet to be transmitted Lower bound 1

2CRA
; CRA is the capacity of the RA channel

Proposition 2 All packets are delivered upon arrival Lower bound 1
θM ; tight when θ < 1

eM

Slotted ALOHA See details in [152, Chapter 4.2.3] Normalized age 1
θM when θ < 1

eM

Algorithm 1 Adaptive age-based thinning (ALOHA) Decreases age and increases throughput simultaneously
Algorithm 2 Stationary age-based thinning (ALOHA) Normalized age e

2 for θ = 1
o(M)

Algorithm 3 Stationary age-based thinning (RA with maximum throughput C) Normalized age 1
2C for θ = 1

o(M)

Table 1.1: Summary of the proposed algorithms and bounds in Chapter 2.

We first derive two general lower bounds on AoI for any transmission policy by considering two ideal

cases: (i) there is always a fresh packet to be transmitted and hence delivered packets are assumed

to experience minimum delay; (ii) all packets are delivered instantaneously upon their arrivals with

minimum delay, but without experiencing collisions. The former lower bound turns out to be active

as the arrival rate (θ) approaches 1, and the latter lower bound becomes active when θ is small, i.e.,

when the inter-arrival time is the dominant term of the inter-delivery time.

We analyze the well-known slotted ALOHA algorithm. It is known that slotted ALOHA is stable

when the sum arrival rate is below the infamous critical point 1
e . But it becomes unstable when the

sum arrival rate is larger than 1
e . We prove that when the sum arrival rate is below 1

e , the normalized

age performance of a (stabilized) slotted ALOHA algorithm, properly defined later, is approximate

1
Mθ in the limit of large M and is optimal. We further show numerically that the normalized age

performance is close to that of centralized max-weight policies that schedule based on age-gain

(which is formally defined in Section 2.4) when the sum arrival rate is less than 1
e . Simulation

results show that as the sum arrival rate increases beyond this critical point, the normalized age of

slotted ALOHA explodes.
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We then ask if we can reduce age as the sum arrival rate increases beyond the critical point 1
e . This

is an important question that sheds light on whether increasing the sampling rate is useful when

communication is over a random access channel. We find an affirmative answer. We propose two

age-based thinning algorithms, i.e., Algorithm 1 and Algorithm 2. The core idea for both algorithms

is that transmitters selectively disregard packets to mimic an effective (sum) arrival rate equal to

1
e . In particular, we develop a threshold policy that can be implemented in a decentralized manner

at the transmitters and in which packets that offer large age-gains are transmitted, and those that

offer small age-gains are disregarded. In Algorithm 1 we propose an adaptive threshold in which

the threshold is updated and improved based on the channel feedback. Algorithm 2 proposes a

stationary threshold, in which the threshold is predetermined and thus saves computation costs.

Using Algorithm 2, i.e., the stationary thinning method, we prove asymptotically (M → ∞) that

for any θ that is not too small
(
θ = 1

o(M)

)
, the normalized age is approximate e

2 and twice better

than that the minimum age that (stabilized) slotted ALOHA can attain. Furthermore, numerical

results show that as θ approaches 1, the normalized age approaches 1 using Algorithm 1 (the adaptive

thinning method) that adaptively optimizes the threshold in each time slot. Interestingly, we observe

that the adaptive thinning algorithm attains a smaller age while increasing the throughput beyond

what slotted ALOHA can achieve.

Finally, we generalize our stationary thinning mechanism (Algorithm 2) and demonstrate that

the idea behind Algorithm 2 is useful for other random access technologies (e.g. CSMA), see

Algorithm 3. In particular, we prove that given a technology that can achieve the throughput C

(without coding), Algorithm 3 can attain the normalized age of 1
2C . Numerical results show that it

approaches order-optimality in the limit of large M .

Contributions in Chapter 3 In Chapter 3, we study sampling and remote estimation of M

independent first-order autoregressive processes over reliable and unreliable wireless collision chan-

nels. As opposed to all prior works, we seek decentralized solutions in which the decision at each

node is based solely on its local observations and channel collision feedback. Our goal is to minimize

the estimation error, specifically a normalized metric that we call the normalized average estimation
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error (NAEE). This metric looks at the expected time-average estimation error, normalized by the

number of source nodes M . We are interested in the asymptotic regime where M →∞.

In reliable random access channels, three general cases of autoregressive processes are considered,

i.e., stationary autoregressive processes (with autoregressive coefficient 0 < γ < 1), random walk

processes (γ = 1), and explosive autoregressive processes (γ > 1). In different regimes of γ, two

general classes of policies are considered, namely oblivious policies and non-oblivious policies. In the

former class, decision-making is independent of the processes that are monitored, while in the latter

class, decision-making depends on the processes. In the class of oblivious policies, when γ = 1, we

prove that minimizing the expected time-average estimation error, is equivalent to minimizing the

age of information. This leads to lower and upper bounds on the minimum achievable estimation

error in this class along with efficient oblivious policies that are age-based. In particular, the NAEE

under age-based policies is lower bounded by .88σ2 and upper bounded by e
2σ

2. When γ 6= 1,

the oblivious optimal policies essentially minimize the age of information, so the results can be

straightforwardly to extend the cases when γ 6= 1.

We next ask if non-oblivious policies can provide a significant gain by observing the processes

as they progress. Since all source nodes are provided with channel collision feedback, they can

compute their age functions and reproduce their respective estimated processes (at the destination)

in each time slot. Furthermore, using the collision feedback, the nodes can implicitly coordinate

for communication. We define the notion of error process at each node which is a function of

the sample values and age. We then propose a threshold policy, called error-based thinning, in

which source nodes become active only when their corresponding error process is beyond a given

threshold. Once a node becomes active, it transmits stochastically following a slotted ALOHA

policy. In the regime of γ = 1, to find an optimal threshold and find a closed-form solution for

the resulting NAEE, we first provide a closed-form expression for the NAEE that is a function of

the peak age, the transmission delay, a term which we call the silence delay, as well as the process

realization. We approximately find the NAEE under an optimal threshold policy by considering the

underlying autoregressive Markov process as a discretized Wiener process. An optimal threshold is
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then shown to be approximately σ
√
eM and the resulting NAEE to be e

6σ
2. Compared to oblivious

policies, the multiplicative gain provided by the thresholding non-oblivious policy equals 3. The

approximation error increases linearly as a function of the variance of the innovation process and

decreases as M gets large. In the regime of γ 6= 1, there is no closed-form expression for the NAEE.

We propose numerical solutions for an optimal threshold by approximating the expected time period

in which nodes are keeping silent. We observe numerically that the multiplicative gain offered by

the thresholding non-oblivious policy increases with γ.

Next, we extend our framework to unreliable random access channels. Similar to reliable ones,

when γ = 1, the closed-form of NAEE under oblivious and non-oblivious policies are provided.

The multiplicative gain is the same as that in reliable random access channels, which equals 3

and is independent of the channel erasure probability ε. Under non-oblivious policies, an optimal

threshold is approximately σ
√
eM/(1− ε) and the corresponding NAEE is e

6(1−ε)σ
2. When γ 6= 1,

the numerical approximations of the optimal threshold for reliable random access channels can be

extended to unreliable random access channels straightforwardly.

Simulation results show that the proposed decentralized threshold policy outperforms oblivious poli-

cies. Moreover, oblivious policies are shown to outperform state-of-the-art policies (both oblivious

and non-oblivious) that impose a fixed rate (without using the collision feedback) on reliable and

unreliable random access channels in all regions of γ. When γ = 1, it is numerically shown that

the performance of the optimal threshold policy is very close to that of centralized greedy policies

that schedule transmissions according to the instantaneous error reduction or age reduction. When

0 < γ < 1, the performance of the optimal threshold policy is better than the centralized greedy

policies that schedule transmissions according to the instantaneous age reduction, which implies

that age is not a good representative in this case.

Contributions in Chapter 4 In this chapter, we study sampling and remote estimation of

M independent random walk processes over wireless collision channels in ad-hoc networks. Every

source can decide, based on its own information: (i) when to sample, i.e., if the source transmits

a packet in a time slot; (ii) who to communicate with, i.e., which neighbor is the receiver of a
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transmitted packet; and (iii) what to transmit, i.e., which packet is chosen and transmitted to the

receiver. Our goal is to minimize the time-average estimation error and/or time-average age of

information (AoI) by proposing decentralized sampling and transmission policies. Two classes of

policies are considered: oblivious policies and non-oblivious policies [34]. We first show that in

oblivious policies, the minimization of estimation error is equivalent to the minimization of the

AoI. Then, we unify the error minimization and age minimization problems and propose a general

solution framework.

As compared to decision making in random access channels [34, 37], the dimension of the decision

space in our considered problem is significantly higher. In addition, complex network topologies need

to be incorporated into the decision-making process. Thus, theoretical frameworks are no longer

tractable, and we use techniques from MARL to address this problem. We propose a graphical

MARL framework, which is an extension and modification of the classical actor-critic framework and

has three main changes: (i) the critic is a GNN rather than a fully-connected neural network, (ii) the

actor is a GRNN rather than a fully-connected neural network, (iii) an action distribution operator

is added, which receives output node embeddings of the actor GRNN as input, and generates action

distributions for all aforementioned decisions at its output. The numbers of parameters in the actor

and critic models are independent of the number of agents in the network. Moreover, our framework

is agnostic to the permutations of agent indices, given the fact that GNNs, GRNNs, and our

proposed action distribution operator are permutation-equivariant. We further show that the actor

(the GRNN) built on graph filters and the actor distribution operator exhibits the transferability

property, implying that the near-optimal solutions trained on small or moderate networks can be

applied to large-scale networks, while maintaining near-optimality.

In our implementations, we utilize two widely-used RL training methods: (i) independent learning

(IL) (e.g., IPPO, IA2C), where every agent has a distinct actor and distinct critic to train in a decen-

tralized manner, and (ii) centralized training and decentralized execution (CTDE) (e.g., MAPPO,

MAA2C), where a centralized critic learns a joint state value function. Then, we have graphical

RL frameworks with IL and CTDE. Numerical experiments reveal interesting observations: (i) Our
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proposed policies outperform the state-of-the-art. The graphical RL framework outperforms the

classical RL framework. And the graphical RL with CTDE outperforms the graphical RL with IL

because the former can make the most of global, network-wide information during training. (ii) As

we expected, classical RL with IL suffers from non-stationarity, and the performance deteriorates as

training proceeds. However, opposite to the classical RL with IL, the performance of the graphical

RL with IL is convergent. This convergence implies that the graphical RL with IL can help amelio-

rate non-stationarity. (iii) Transferability is verified by enhanced performance gains in large-scale

networks during execution, i.e., the benefits of the proposed graphical RL framework compared to

the baselines increase with the number of agents (or, equivalently, the network size).

Contributions in Chapter 5 In this chapter, we consider erasure networks and devise broadcast

strategies that are efficient both in AoI and rate. The inherent tradeoff can be explained as follows.

On the one hand, a higher rate can correspond to a smaller delay/AoI (both in the sense that

queues get emptied faster and that fewer uses of the network are needed in total to transmit a

fixed number of information bits). On the other hand, to achieve high rates, we need to wait for

the arrival of other packets and change transmission priorities to facilitate coding, and this can

lead to a larger AoI. To shed light on the above tradeoff, we consider an erasure wireless network

with M users. Motivated by the success of age-based scheduling in wireless networks, we propose

a scheduling framework where we schedule various useful coding actions as opposed to the users.

Within this framework, we can capture both rate efficiency and age efficiency. Coding is known to

provide significant benefits compared to time sharing especially as the number of users M increases

[153, 154, 155, 156]. Our work shows, for the first time, that coding also provides benefits in terms

of age and the gain increases by M sharply, especially when the generation rate is small and/or the

channel erasure probability is large. More generally, we design deterministic coding policies that

minimize the average AoI under given rate constraints.

Specifically, we first propose a novel framework of network AoI on the broadcast channels under

transmission mechanism with coding (Section 5.2). Then, (near-)optimal coding policies with un-

coded and coded caching are proposed (Section 5.3 and Section 5.4). Two general lower bounds
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and an upper bound are derived on EAoI for any transmission policy (Section 5.5, Theorem 17 and

Theorem 19). The bounds are functions of generation rates, erasure probabilities, and target rate

constraints. Finally, simulation results reveal that (a) coding is beneficial, and the benefits increase

with the number of users; (b) a good approximation of proposed policies is obtained based on the

maximum clique size of the information graph; (c) the tradeoff between rate and AoI exists, which

implies that the system has to sacrifice AoI to achieve a higher rate.

Contributions in Chapter 6 In this chapter, we study a spreading process such as Covid-19

and design sequential testing and isolation policies to contain the spread. Our contributions are as

follows.

Formulating the spread process through a compartmental model and a given contact network,

we show that the problem of minimizing the total cumulative infections under a given test budget

reduces to minimizing a supermodular function expressed in terms of nodes’ probabilities of infection

and it thus admits a near-optimal greedy policy. We further design reward-based algorithms that

minimize an upper bound on the cumulative infections and are computationally more tractable in

large networks.

The greedy policy and its reward-based derivatives are applicable if nodes’ probabilities of infection

were known. However, since the set of infected nodes is unknown, these probabilities are unknown

and can only be learned through sequential testing. We provide a message-passing framework

for sequential estimation of nodes’ posterior probabilities of infection given the history of test

observations.

We argue that testing has a dual role: (i) discovering and isolating the infected nodes to contain the

spread, and (ii) providing more accurate estimates for nodes’ infection probabilities which are used

for decision-making. In this sense, exploitation policies in which decision-making only targets (i)

can be suboptimal. We prove in a stylized network that when the belief about the probabilities is

wrong, exploitation can be arbitrarily bad, while a policy that combines exploitation with random

testing can contain the spread. This points to novel exploitation-exploration tradeoffs that stem
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from the lack of knowledge about the location of infected nodes, rather than the network or spread

process.

Following these findings, we propose exploration policies that test each node probabilistically ac-

cording to its reward. The core idea is to balance the exploitation of knowledge (about the nodes’

infection probabilities and the resulting rewards) and exploration of the unknown (to get more ac-

curate estimates of the infection probabilities). Through simulations, we compare the performance

of exploration and exploitation policies in several synthetic and real-data networks. In particular,

we investigate the role of three parameters on when exploration outperforms exploitation: (i) the

unregulated delay, i.e., the period when the disease spreads without intervention; (ii) the global

clustering coefficient of the network, and (iii) the average shortest path length of the network. We

show that when the above parameters increase, exploration becomes more beneficial as it provides

better estimates of the nodes’ probabilities of infection.
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CHAPTER 2

Information Freshness in Random Access Channels

In this chapter, we investigate the information freshness in random access channels, where M

identical source nodes transmit information updates over a shared wireless medium. The aim is

to minimize the time-average AoI in the network by proposing decentralized transmission policies.

The main challenge arises as follows: if nodes transmit packets at a low rate, the information would

not be fresh at the receiver, while if nodes transmit packets frequently with a high rate, many

fresh packets are transmitted but may collide leading to the staleness of information at the receiver.

Thus, we need to select smartly which nodes can transmit packets and design effective decentralized

mechanisms. The major part of this chapter deals with random access technologies such as slotted

ALOHA that do not assume carrier sensing capabilities. The underlying reason is threefold: (i)

Status packets are generally very short (as opposed to traditional settings such as streaming where

packets are long) and so CSMA is not efficient; (ii) Transmitters have low power capabilities. As

such, it is not very efficient (in terms of energy and cost) to perform carrier sensing when the arrival

rate is large and CSMA is not particularly useful when the arrival rate is small. More importantly,

since transmission power is low, the hidden node problem will be a major issue under CSMA-type

protocols; (iii) Our analytical results are clearer without the additional complexity of CSMA. In

Section 2.5.5, we describe how our findings generalize and apply to CSMA.

2.1. Literature Review

Age of information (AoI), introduced in [1, 2], measures the freshness of information at the receiver

side. AoI is a function of both how often packets are transmitted and how much delay packets

experience in the communication network. When the rate of communication is low, the receiver’s

AoI will increase (implying that the receiver’s information is stale) because the transmitter is not

sending packets frequently enough. But even when the transmitter is sending packets frequently,

if the system design imposes a large delay for the packets, the information at the receiver will

still be stale. The metric of AoI is of great importance in the Internet of Things applications where
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timeliness of information is crucial (e.g. in monitoring the status of a system). Assuming a first come

first serve (FCFS) policy, the works in [3, 4] show in queue theoretic setups that AoI is minimized at

an optimal update rate. Relaxing the restriction of FCFS policies, [4, 5] propose packet management

policies that discard old packets and improve AoI in wide regimes of operation. This already points

to the fact that under the metric of AoI, rate, and reliability have little relevance in the design of

timely communication schemes. This is because AoI implicitly assumes that the information content

of the packets forms a Markov process and hence fresh packets render older packets obsolete. In the

past few years, various extensions and new dimensions have also been studied in the paradigm of

timely communication: source and channel coding were studied in [6, 7, 8, 9], multi-hop networks

were studied in [10, 11, 12], and scheduling algorithms were studied in [13, 14, 15, 16, 17, 18, 19].

Prior work such as [13, 14, 18, 20] consider scheduling policies in multiple access channels that are

controlled in a centralized manner. However, in decentralized (random access) applications, employ-

ing such policies would require a huge amount of communication and coordination rendering them

inapplicable. Towards designing decentralized algorithms for minimizing the age of information,

[21, 22] analyze stationary randomized policies under the assumption that sources generate packets

in every time slot (i.e., all sources are active at all times). Considering the more realistic scenario

where packets are generated at random times, [23] analyzes round-robin scheduling techniques with

and without packet management and also presents partial results for stationary randomized poli-

cies. Round-robin policies are proved to be age-optimal in [24] when the number of transmitters

is large and the arrival rate is constant. The follow-up work [25] additionally assumes that nodes

are provided with carrier sensing capabilities and proposes distributed schemes that have good per-

formance in simulations; Nevertheless, [25] does not address how the parameters of the proposed

algorithms should be designed theoretically. The concurrent work [26, 27] (published after our work

[28]) investigate variants of decentralized age-based schemes for CSMA under energy constraints.

In an unslotted, uncoordinated, unreliable multiple access collision channel, [29] provides the exact

system age and an accurate individual age approximation for a small number of sources. The work

[30] which was done independently and concurrently with this work considers a threshold-based

lazy version of Slotted ALOHA where each transmitter attempts to access the channel with a cer-
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tain probability when its corresponding age exceeds a certain threshold. Optimizing the threshold

and the transmission probabilities are non-trivial and the authors provide analysis only for M = 2

transmitters for the special case where the arrival rate is equal to 1.

2.2. System Model

We consider a wireless architecture where a controller monitors the status of M identical source

nodes over a shared wireless medium. To provide analytical frameworks and closed-form solutions,

we focus on symmetric systems (instead of asymmetric ones) and use the profile of all sources as

an estimate of an individual source and look at the limit behaviour. Let time be slotted. At the

beginning of every slot k, k = 1, 2, . . ., the source node i, i = 1, . . . ,M , generates a new packet

encoding information about its current status with probability θ and this packet becomes available at

the transmitter immediately. We denote this generation/arrival process at the transmitter by Ai(k),

where Ai(k) = 1 indicates that a new packet is generated at time slot k and Ai(k) = 0 corresponds

to the event where there is no new update. New packets are assumed to replace undelivered older

packets at the source (i.e., older packets are discarded), relying on the fact that the underlying

processes that are monitored in physical systems are oftentimes Markovian1.

The communication media is modeled by a collision channel: If two or more source nodes transmit

at the beginning of the same slot, then the packets interfere with each other (collide) and do not

get delivered at the receiver. We use the binary variable di(k) to indicate whether a packet is

transmitted from source i and received at the destination in time slot k. Specifically, di(k) = 0 if

source i does not transmit at the beginning of time slot k or if collisions occur; di(k) = 1 otherwise.

We assume a delay of one-time units in the delivery of packets, meaning that packets are transmitted

at the beginning of time slots and, if there is no collision, they are delivered at the end of the same

time slot. We assume that all transmitters are provided with channel collision feedback at the

end of each time slot. Specifically, at the end of time slot k, c(k) = 1 if collisions happened and

c(k) = 0 otherwise. In the event that collision occurs, the involved transmitters can keep the
1We show in Appendix A.1 that this assumption can be made without loss of generality when the performance

measure is Age of Information.

15



undelivered packets and retransmit them according to their transmission policy (until the packets

are successfully delivered or replaced by new packets).

Our objective is to design decentralized transmission mechanisms to minimize the time-average age

of information per source node. A decentralized transmission policy is one in which the decision

of transmitter i at time k is dependent only on its history of actions, the packets arrived so far,

{Ai(j)}kj=1, as well as the collision feedback received so far, {c(j)}k−1
j=1 .

The measure of performance in this work is Age of Information (AoI). Originally defined in [1, 2],

AoI captures the timeliness of information at the receiver side. We extend the definition a bit

further, formally defined below, to also account for the age of information at the source side. Aging

at the source/transmitter is caused by the stochastic nature of arrivals.

Definition 1. Consider a source-destination pair. Let {k`}`≥1 be the sequence of generation times

of packets and {k′`}`≥1 be the sequence of times at which those packets are received at the destination.

At any time τ , denote the index of the last generated packet by ns(τ) = max{`|k` ≤ τ} and the index

of the last received packet by nd(τ) = max{`|k′` ≤ τ}. The source’s age of information is defined by

w(k) = k − kns(k) and the destination’s age of information is defined by h(k) = k − knd(k).

It is clear from the above definition that once there is a new packet available at the transmitter,

the older packet(s) cannot contribute to reducing the age of the system. We hence assume without

loss of generality that buffers at transmitters are of size 1 and new packets replace old packets upon

arrival. We formalize and prove this claim in Appendix A.1.

Following Definition 1, let hi(k) denote the destination’s AoI at time slot k with respect to source i.

The age hi(k) increases linearly as a function of k when there is no packet delivery from source i

and it drops with every delivery to a value that represents how old the received packet is; within our

framework, this would be the corresponding source’s AoI (in previous time slot) plus 1. Without
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loss of generality, we assume wi(1) = 0 and hi(1) ≥ 0, and write the recursion of AoI as follows:

hi(k) =


wi(k − 1) + 1 di(k − 1) = 1

hi(k − 1) + 1 di(k − 1) = 0

(2.1)

and

wi(k) =


0 Ai(k) = 1

wi(k − 1) + 1 Ai(k) = 0.

(2.2)

Note that at the beginning of each time slot k, given the collision feedback {c(j)}j≤k−1 and local

information about {Ai(j)}j≤k, transmitter i can compute its corresponding source’s AoI {wi(j)}j≤k

and destination’s AoI {hi(j)}j≤k.

We define the Normalized Average AoI (NAAoI) as our performance metric of choice2:

Jπ(M) = lim
K→∞

E[JπK ], JπK =
1

M2K

M∑
i=1

K∑
k=1

hπi (k) (2.3)

where π refers to the underlying transmission policy.

We consider centralized policies and decentralized age-based policies in this work. Centralized policies

serve as benchmarks. They need a central scheduler who receives information about all arrival

processes and previous transmission actions, and coordinate all the transmitters. When the number

of transmitters M gets large, facilitating such scales of coordination is not feasible and we are

hence interested in decentralized mechanisms. Randomized policies are easy to implement in a

decentralized manner. Previous works [21, 22] fall into this class but they have the weakness of

not utilizing local collision feedback at the transmitters. Utilizing the collision feedback, we aim to

make age-based decisions at the transmitters in a decentralized manner.
2For any distributed transmission scheme, it is clear that the average AoI increases with the number of source

node M for any fixed arrival rate θ. Note that our problem setup allows M to become very large, so to offset the
effect introduced by the number of source nodes, we consider the proposed NAAoI.
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2.2.1. Notation

We use the notations E[·] and Pr(·) for expectation and probability, respectively. We denote scalars

with lowercase letters, e.g. s; vectors with underlined lowercase letters, e.g. s, and matrices with

boldface capital letters, e.g. S. Notation [s]i represents the ith element of s and [S]ij denotes the

element in the ith row and jth column. Random variables are denoted by capital letters, e.g. S.

We use M to denote the number of transmitters, K to denote the time horizon, and C to denote

the capacity of a channel (under a given technology). The operator (s)+ returns 0 if s < 0 and it

returns s if s ≥ 0. bsc represents the largest integer j such that j ≤ s. O(·) and o(·) represent the

Big O and little o notations according to Bachmann-Landau notation, respectively. We summarize

the notations in Table 2.1.

M The number of sources
K The time horizon
θ The generation/arrival rate of new packets

Ai(k) The indicator of the generation/arrival process
di(k) The indicator of delivery at source i
λi(k) The indicator of transmission at source i
c(k) The indicator of collision in the channel
hi(k) The destination’s AoI at time k w.r.t source i
wi(k) The source’s AoI at time k w.r.t source i
π A specific transmission and sampling policy

Jπ(M) Normalized Average AoI with M sources
CRA The sum-capacity of the random access channel
δi(k) The age-gain in time slot k at source i

{`m(k)}m The distribution of age-gain in time slot k
T(k) The threshold under the AAT policy at time k
T∗ The threshold under the SAT policy

Table 2.1: Useful notations in Chapter 2.

2.3. Lower Bound

We start by deriving two lower bounds on the achievable age performance. The first lower bound

is derived by assuming that there is always a fresh packet to be transmitted (and hence delivered

packets are assumed to experience unit-time delays). The second lower bound is derived by assuming

that all packets are delivered instantaneously upon their arrivals (with unit-time delays, but without
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Figure 2.1: An example of Di(m), Ii(m), and Γi(m).

experiencing collisions). The former is active as θ approaches 1 and the latter is active when θ is

small (when the inter-arrival time is the dominant term of the inter-delivery time).

Fix a large time horizon K and look at the packets of source i. Let Ni(K) denote the number

of delivered packets (from source i) up to and including time slot K. Now consider the mth and

(m + 1)th deliveries at the receiver and denote the delivery time of them at the receiver by Ti(m)

and Ti(m+ 1), respectively. The inter-delivery time

Ii(m) = Ti(m+ 1)− Ti(m)

is the time between these two consecutive deliveries. Upon the arrival of the mth delivered packet at

the receiver, the age of information at the receiver drops to the value Di(m) which represents how

much delay the packet has experienced in the system. Fig. 2.1 illustrates the introduced notation.

Now define Γi(m) as the sum of age functions hi(k), where k is in the interval [Ti(m), Ti(m+ 1)):

Γi(m) =

Ti(m)+Ii(m)−1∑
k=Ti(m)

hi(k) =
1

2

(
Di(m) + Ii(m) +Di(m)

)
· Ii(m)− Ii(m)

2

=
1

2
I2
i (m)− 1

2
Ii(m) +Di(m)Ii(m).

(2.4)
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It follows that in the limit of large K, we have

Jπ(M) = lim
K→∞

E[JπK ] = lim
K→∞

E

 1

M2

M∑
i=1

1

K

Ni(K)∑
m=1

Γi(m)

 .
Using this formulation, we next lower bound NAAoI. Let CRA denote the sum capacity of the

underlying random access channel. Note that in the limit of large K, Ni(K)
K is the throughput of

transmitter i and

lim
K→∞

M∑
i=1

Ni(K)

K
≤ CRA. (2.5)

Then, we have the following propositions.

Proposition 1. For any transmission policy π,

Jπ(M) ≥ 1

2CRA
+

1

2M
.

Proof. The proof is given in Appendix A.2.

Proposition 2. For any transmission policy π,

Jπ(M) ≥ 1

Mθ
. (2.6)

Proof. The proof is given in Appendix A.3.

Let us give an example of how Proposition 1 can be utilized. Note that CRA is not known in general.

Nevertheless, any upper bound on CRA gives a lower bound on the normalized age. Based on [157],

the capacity of the random access channel with collision feedback, in the limit of large M , is upper

bounded by limM→∞CRA ≤ 0.568 and hence

lim
M→∞

Jπ(M) ≥ .88. (2.7)

Remark 1. The lower bound in (2.7) does not assume CSMA capabilities. For CSMA, we have
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CCSMA ≤ 1 and hence

Jπ(M) ≥ 1

2
+

1

2M
. (2.8)

We show the asymptotic optimality of this bound in Section 2.5.5 as M →∞.

2.4. Centralized Scheduling

The first class of schemes that we consider are centralized schemes that avoid collision by scheduling

transmitters one by one. In particular, Max-Weight policies are shown to perform close to optimal

in various works such as [13, 14, 20]. Although such schemes are not practical (due to the scale

of required coordination), it turns out that they provide useful intuitions and they also serve as a

benchmark for comparison in Section 2.5. We assume a central scheduler that can observe all arrival

processes and coordinate/control all senders’ actions in order to avoid collisions.

Denote by λi(k) = 1 the event that transmitter i sends a packet and recall that di(k) indicates

delivery of packets. Note that if λj(k) = 1 for another source j 6= i, then the packets collide and no

packets will be delivered. One can thus write

di(k) = λi(k)
∏
j 6=i

(
1− λj(k)

)
. (2.9)

The goal of a central scheduler is to select one source for transmission at each time. Denote

h(k) = (h1(k), h2(k), · · · , hM (k)). Following the works in [13, 14, 20], an age-based max-weight

policy can be designed by considering the following Lyapunov function:

L(h(k)) =

M∑
i=1

hi(k) (2.10)

and minimizing its corresponding one-step Lyapunov Drift:

∆(h(k)) =L(h(k + 1))− L(h(k)). (2.11)
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It turns out that the max-weight policy selects, in each time slot k, the transmitter that offers the

highest age-gain δi(k), defined below:

δi(k) := hi(k)− wi(k). (2.12)

δi(k) quantifies how much the instantaneous receiver’s age of information reduces upon successful

delivery from transmitter i. Proposition 3 states the above max-weight policy more formally (see

Appendix A.4 for the proof).

Proposition 3. For every time slot k, define

`(k) = arg max
i
δi(k). (2.13)

An optimal policy to minimize the one-step drift in (2.11) is to choose λ`(k)(k) = 1 and λj(k) = 0

for all j 6= `(k).

Remark 2. We will show in Section 2.5 how the notion of age-gain plays a central role also in the

design of distributed age-based policies.

2.5. Decentralized Age-Based Policies

In this section, we propose a new class of decentralized policies designed to prioritize transmissions

for the purpose of minimizing the age of information. In each time slot k, transmitter i decides

whether or not to send its packet depending on its local AoI, and in particular, based on δi(k)(
defined in (2.12)

)
.

To develop a deeper understanding of our proposed algorithm, let us focus on two regimes of

operation assuming large M :

• The regime of infrequent arrivals, where θ ≤ 1
eM ,

• The regime of frequent arrivals, where θ > 1
eM .

The choice of these two regimes is made based on the well-established performance of slotted ALOHA
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with respect to rate (throughput) [152, Chapter 4]. We will first develop our framework for the

slotted-ALOHA random access technology and then generalize it to other random access technologies

in Section 2.5.5.

The basic idea of slotted ALOHA is as follows: At every time slot k, transmitters send their packets

immediately upon arrival unless they are “backlogged" after a collision in which case they transmit

with a backoff probability. In this section, we focus on Rivest’s stabilized slotted ALOHA [152,

Chapter 4]. In this algorithm, all arrivals are regarded as backlogged nodes that transmit with

the backoff probability pb(k). Let c(k) = 1 denote the event that collision occurred at time k

and c(k) = 0 denote the complementary event. The backoff probability is calculated through a

pseudo-Bayesian algorithm based on an estimate of the number of backlogged nodes n(k) (see [152,

Chapter 4.2.3]):

pb(k) = min
(
1,

1

n(k)

)
n(k) =


n(k − 1) +Mθ + (e− 2)−1 if c(k) = 1

max
(
Mθ, n(k − 1) +Mθ − 1

)
if c(k) = 0.

(2.14)

It is well known that this algorithm attains stability of queues for θ < 1
eM . In other words,

transmitters can reliably send packets with a sum rate up to 1
e in a decentralized manner [152,

Chapter 4.2.3]. Asymptotically, when M → ∞, the probability of delivering a packet in each time

slot is 1/e, the probability of collisions is 1 − 2/e, and the probability of having an idle channel is

1/e (see Appendix A.5). Note that when Mθ < 1
e , the expected total number of delivered packets

in every time slot is Mθ.

We find the asymptotic NAAoI (in the limit of large M) in Theorem 1 below.

Theorem 1. Suppose θ < 1
eM and define

η = lim
M→∞

Mθ.
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Any stabilized slotted ALOHA scheme achieves

lim
M→∞

JSA(M) =
1

η
.

Moreover, (stabilized) slotted ALOHA is order optimal in terms of NAAoI.

Proof. The proof is presented in Appendix A.6. The idea is to divide the sources into two groups

in every time slot k: sources with δi(k) = 0 and sources with δi(k) > 0. We show that (i) the

contribution of the first group of sources to NAAoI is equal to 1
Mθ , and (ii) the second group

constitutes only a vanishing fraction of the nodes and therefore, even though the sources in this

group have larger δi(k)’s, their total contribution vanishes as M →∞.

2.5.1. Age-Based Thinning

When the arrival rate θ of each transmitter approaches 1
eM , the NAAoI of slotted ALOHA ap-

proaches e (see Theorem 1). As θ increases beyond 1
eM , the arrival rate gets larger than the

maximum channel throughput (= e−1), n(k) overestimates the number of active transmitters and

pb(k) underestimates the optimal probability of transmission, causing the throughput to decrease

and the NAAoI to sharply increase.

Noting that the maximum channel rate/throughput is 1
e when (stabilized) slotted ALOHA algo-

rithms are applied, a natural question arises: What should the transmitters do in order to ensure a

small age of information at the destination when θ ≥ 1
eM ? A naive solution to the above question

would be to have each transmitter randomly drop packets and perform at the effective rate 1
eM .

But Theorem 1 shows that this only leads to NAAoI ≈ e which implies that we will not be able to

benefit from the frequency of fresh packets to reduce age.

To benefit from the availability of fresh packets, we devise a decentralized age-based transmission

policy in which transmitters prioritize packets that have larger age-gains. In particular, in each

time slot k, transmitters find a common threshold T(k) in order to distinguish and keep packets

that offer high age-gains. The core idea is to still fully use the channel (depending on the available
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technology) but to carefully select, in a decentralized manner, what packets to send to minimize

age. Recall that δi(k) denotes the age-gain of scheduling transmitter i. In our proposed algorithms,

transmitters that have large age-gains become active and those with small age-gains stay inactive.

More formally, Transmitter i is called active in time slot k if δi(k) ≥ T(k). Only active transmitters

participate in the transmission policy. Alternatively viewed, at time k, we propose to discard a

fresh packet at transmitter i if 0 ≤ δi(k) < T(k) and to keep it otherwise. We refer to this process

as thinning and this is done locally at the transmitters based on the AoI at the source/destination.

Note that no matter how the transmission policy is designed, since it is decentralized, multiple

transmitters may try to access the channel at the same time, leading to collisions. For simplicity

and clarity of ideas, we will restrict attention to slotted ALOHA techniques to resolve such collisions,

and in particular, the Rivest’s stabilized slotted ALOHA3 described in (2.14).

The main underlying challenge is in the design of T(k). We propose two algorithms: an adaptive

method of calculating T(k) for each time slot based on the local collision feedback and a fixed

threshold value T∗ that is found in advance and remains fixed for all time slots k.

In the remainder of this section, we assume that M is large, and θ > 1
eM . The following definition

comes in handy in presenting our results.

Definition 2. Consider transmitter i at time slot k. If δi(k) = m, we say that transmitter i is an

m-order node. Now let `m(k) be the expected fraction of m-order nodes in time slot k, i.e.,

`m(k) = E

[
1

M

M∑
i=1

1{δi(k)=m}

]
. (2.15)

We define {`m(k)}∞m=0 as the average node distribution (of the age-gain) at time k.
3In classical slotted ALOHA, “backlogged nodes” represent the nodes who have experienced collisions and transmit

with the backoff probability pb(k). In our version of Rivest’s algorithm, since we have unit buffer sizes, we don’t use
the term “backlogged”. We instead work with active nodes. In each time slot k, nodes decide based on their local
age-gains whether they should be active. Active nodes transmit with probability pb(k), see (2.14) where n(k − 1) is
the number of active nodes in time k − 1.
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2.5.2. Adaptive Threshold

Let T(k) denote the threshold for decision-making in slot k. We propose to choose T(k) such that

it imposes an effective arrival rate equal to 1
eM per transmitter. If the effective arrival rate per

transmitter is less than 1
eM , we are not utilizing the channel efficiently. If it is larger, then we are

not prioritizing efficiently. This is because we would get a larger pool of packets than the slotted

ALOHA can support, leading to reduced throughput and a larger age. More specifically, we design

T(k) in three steps:

(i) Compute an estimate of the node distribution of the age-gain;

(ii) Find T(k) based on the estimated distribution;

(iii) Update the estimate of the node distribution based on the chosen T(k) and the collision

feedback.

Note that {`m(k)}∞m=0 is unknown in decentralized systems. We hence find an estimate of it

{ˆ̀m(k)}∞m=0 in every time slot. We summarize the process as follows

{ˆ̀m(k)}∞m=0 = F (c(k), {ˆ̀m(k − 1)}∞m=0) (2.16)

where F (·) is a function that will be determined later.

Suppose the estimated node distribution {ˆ̀m(k − 1)}m is known at (the end of) time slot k − 1.

We now describe how threshold T(k) is designed and how {ˆ̀m(k)}m is updated. For clarity of

ideas, let us view the time slot k in three stages: The first stage corresponds to the beginning

of the time slot when new packets may arrive and replace the old packets. We denote the time

just before the arrival of new packets by k− and the time just after the arrival of packets by k+.

After the arrival of new packets, at time k+, the source’s AoI changes from wi(k
−) to wi(k+) and

the destination’s AoI hi(k+) remains the same as hi(k−). So the age-gain values and their node

distributions change. We denote the resulting node distribution in this stage by {ˆ̀m(k+)}m. In

the second stage, transmitters determine the threshold T(k) based on {ˆ̀m(k+)}m. Transmissions
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happen according to the designed threshold T(k). In the third phase, at the end of time slot k

when collision feedback is also available, the node distribution is once again estimated. We slightly

abuse notation and denote the final estimate of the node distribution at the end of time slot k with

{ˆ̀m(k)}m. The aforementioned three stages of calculating T(k) are described next.

Stage 1: Suppose the estimated node distribution {ˆ̀m(k−1)}m is known at the beginning of slot k

before the arrival of new packets. The expected fraction of m-order nodes that receive new packets

is θ ˆ̀
m(k − 1). The order of these nodes increases and this changes the expected node distribution

to {ˆ̀m(k+)}m as a function of {ˆ̀m(k− 1)}m. Let am(k) denote the expected fraction of nodes that

have just become m-order nodes at time k+ for m ≥ 1.

Lemma 1. The expected fraction of nodes that have just become m-order nodes at time k+ is

am(k) = θ2
m−1∑
j=0

`j(k − 1)(1− θ)m−j−1 (2.17)

and the expected node distribution of age-gain at time k+ is

`m(k+) =

 (1− θ)`m(k − 1) m = 0

(1− θ)`m(k − 1) + am(k) m ≥ 1.
(2.18)

Proof. The proof is straightforward and delegated to Appendix A.7.

We define âm(k) as an estimate of am(k), which can be obtained by (2.17) and (2.18) by replacing

`m(k), `m(k+) with ˆ̀
m(k), ˆ̀

m(k+), respectively.

Stage 2: The threshold T(k) is determined based on {ˆ̀m(k+)}m. We design T(k) such that the

effective arrival rate of packets that have an age-gain above T(k) is close to 1
e . In other words,

we thin the arrival process using local age information. The critical point 1
e is the maximum sum

arrival rate that ALOHA can support. So if the effective sum arrival rate falls below 1
e , we do not

use the full channel capacity4 and if we operate above 1
e , then we incur additional collisions and

4Here, capacity refers to the maximum achievable sum rate under ALOHA.
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delay.

We define the effective arrival rate as the fraction of sources with new arrivals whose age-gain is

larger than or equal to T(k). Recall that âm(k) is the estimation of the expected fraction of nodes

that have just become m-order nodes at time k+ (coming from lower order nodes). So the total

(estimated) fraction of nodes whose age-gain would, for the first time, pass the threshold T(k) is

∑
m≥T(k)

âm(k).

We propose to choose T(k) according to the following rule:

T(k) = max

t|∑
m≥t

âm(k) ≥ 1

eM

 . (2.19)

Remark 3. We chose T(k) to be the maximum threshold value that does not bring an effective sum

arrival rate below 1
e . This is due to the integer nature of age and hence k. One can also time share

between T(k)− 1 and T(k) to operate at an effective sum arrival rate (almost) equal to 1
e . Thus, to

simplify (2.14), we can replace Mθ by the effective arrival rate 1
e in (2.14).

Remark 4. The threshold T(k) in (2.19) can also be applied to the regime 0 < θ < 1
eM . In

this regime,
∑∞

m=1 am(k) < 1
eM . Therefore, assuming that the estimates âm(k) are accurate, the

threshold is T(k) ≤ 1, reducing the proposed algorithm to the slotted ALOHA.

Stage 3: Once the threshold T(k) is determined, each transmitter verifies locally if its age-gain is

above the specified threshold. If so, it transmits its packet with probability pb(k) defined in (2.14)

mimicking slotted ALOHA. If collisions happen or if all nodes abstain from transmitting, then AoI

at the destination increases by 1 for all sources. If only one node transmits, its packet will be

delivered successfully and the corresponding age at the destination drops to the source’s AoI.

2.5.3. Estimating the node distribution

It remains to estimate ˆ̀
m(k) at the end of time slot k, which will serve in computing T(k+ 1) in the

next time slot. We assume that at the end of time slot k, all transmitters are provided with collision
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feedback from the channel and we hence consider two cases separately: c(k) = 0 and c(k) = 1.

If collision has occurred, i.e., c(k) = 1, then the order of nodes will not change:

ˆ̀
m(k) = ˆ̀

m(k+), m ≥ 0. (2.20)

If there was no collision, i.e., c(k) = 0, then either a packet was delivered or no packet was delivered.

Recall that we design T(k) to impose (in the limit of large M) an effective sum arrival rate almost

equal to 1
e . Following Lemma 15 in Appendix A.5, the two events of idle and successful delivery are

almost equiprobable for large M :

lim
k→∞

Pr
( M∑
i=1

di(k) = 1, c(k) = 0
)
≈ 1

e

lim
k→∞

Pr
( M∑
i=1

di(k) = 0, c(k) = 0
)
≈ 1

e
.

Thus, condition on c(k) = 0, a packet is delivered with probability 1/2, i.e., the expected number

of delivered packets is 1/2 and by the inherent symmetry of the system, each active node has the

same chance to deliver a new packet. For any m ≥ T(k), a packet is delivered by m-order nodes

with probability

rm(k) =
`m(k+)∑

t≥T(k) `t(k
+)
. (2.21)

The expected number of m-order nodes is M`m(k+) and the expected number of delivered packets

by m-order nodes (condition on c(k) = 0) is rm(k)
2 . Note that m-order nodes can not deliver more

than M`m(k+) packets since the total number of m-order nodes is M`m(k+) and the buffer size is

1, then

rm(k)

2
< M`m(k+). (2.22)

In order to estimate the expected fraction of m-order nodes that have a successful delivery, we
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simply plug in ˆ̀
m(k+) as an estimate for `m(k+). Since (2.22) does not necessarily hold anymore

using the estimates, we estimate the expected fraction of m-order nodes with a successful delivery

as follows:

1

M
min

(rm(k)

2
,M ˆ̀

m(k+)
)
,

where rm(k) is computed by (2.21) and replacing `m(k) with ˆ̀
m(k). Consequently, the update rule

of the node distribution of age, {ˆ̀m(k)}m, is given as follows:

ˆ̀
0(k) =ˆ̀

0(k+) +
∞∑

m=T(k)

min
(rm(k)

2M
, ˆ̀
m(k+)

)
ˆ̀
m(k) =ˆ̀

m(k+), 1 ≤ m ≤ T(k)− 1

ˆ̀
m(k) =

(
ˆ̀
m(k+)− rm(k)

2M

)+

, m ≥ T(k).

(2.23)

Collecting Stages 1 - 3, from (2.18), (2.16) can be re-written as

ˆ̀
0(k) =(1− θ)ˆ̀

0(k − 1) + 1{c(k)=0}

∞∑
m=T(k)

min
(rm(k)

2M
, (1− θ)ˆ̀

m(k − 1) + âm(k)
)

ˆ̀
m(k) =(1− θ)ˆ̀

m(k − 1) + âm(k), 1 ≤ m ≤ T(k)− 1

ˆ̀
m(k) =

(
(1− θ)ˆ̀

m(k − 1) + âm(k)− 1{c(k)=0}
rm(k)

2M

)+

, m ≥ T(k).

(2.24)

where am(k) and rm(k) are defined in (2.17) and (2.21), respectively. Finally, in this case, the

probability of transmission is calculated by (2.14), whereMθ is replaced by the effective arrival rate

1
e .

Algorithm 1 describes the proposed distributed age-based transmission policy. We numerically eval-

uate its age performance in Section 2.6 and analyze a stationary version of it when the threshold

is fixed in Section 2.5.4. Comparing with the slotted ALOHA in (2.14), Algorithm 1 significantly

reduces the NAAoI when the sum arrival rate is beyond 1
e (see Fig. 2.3a and Fig. 2.4a). It achieves

this by carefully selecting and delivering packets with a large age-gain. The NAAoI under Algo-
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rithm 1 decreases sharply when the arrival rate θ approaches 1 (see Figure 2.2a). In particular,

the NAAoI it achieves at θ = 1 is almost 1. Contrasting that with the lower bound in Proposition

1, one comes to the conclusion that the throughput achieved by Algorithm 1 is larger than that

of a standard slotted ALOHA. This is because of the implicit coordination that is facilitated by

estimating and utilizing the age gain distributions for decision-making.

Algorithm 1 Adaptive Age-based Thinning (AAT)
Set a large integer N and the time horizon K.
Set initial points: hi(0) = 1, wi(0) = 0 for i = 1, 2, · · · ,M ; c(0) = 0; T(0) = 1; pb(0) = 1;
n(0) = 0; k = 1.
repeat
Step 1: Calculate {ˆ̀m(k+)}Nm=1 by (2.18).
Step 2: Calculate T(k) by (2.19).
Step 3: For transmitter i, i = 1, . . . ,M : compute δi(k+) = hi(k

+)−wi(k+); if δi(k+) < T(k),
then it does not transmit packets; if δi(k+) ≥ T(k), then it transmits a packet with probability
pb(k)5.
Step 4: If c(k) = 0, calculate {ˆ̀m(k)}Nm=1 by (2.20), and if c(k) = 1, calculate {ˆ̀m(k)}Nm=1 by
(2.23). Calculate pb(k + 1) by (2.14) in which Mθ is replaced by min(Mθ, e−1).

until k = K
Calculate JAATK by (2.3).

Remark 5. From (2.14), to estimate the number of active nodes in each time slot, the number of

nodes in the network is needed. We set M to be a pre-determined parameter, which is known to all

nodes.

Remark 6. The estimates {ˆ̀m(k)}m and {âm(k)}m in Algorithm 1 are not exactly accurate and

this is due to the integer nature of the threshold. Assume that {ˆ̀m(k0)}m and {âm(k0)}m are exactly

accurate in time slot k0. We may have
∑

m≥T(k0)+1 âm(k0) < 1
eM but

∑
m≥T(k0) âm(k0) > 1

eM in

which case the effective arrival rate
(
=
∑

m≥T(k0) âm(k0)
)
would be larger than e−1. But the steps

in (2.23) are derived by assuming an effective arrival rate 1
e and this leads to inaccuracies in our

estimates {ˆ̀m(k)}m and {âm(k)}m as computed in Algorithm 1.

Remark 7. We updated {ˆ̀m(k)}m as a function of {ˆ̀m(k − 1)}m and the collision feedback c(k),

hence the name adaptive. T(k) and {ˆ̀m(k)}m are known at all sources and every source finds the

same T(k). If we update {`m(k)}m (not {ˆ̀m(k)}m) by the conditional expectation of {`m(k)}m,
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condition on {`m(k+)}m but not on c(k), we will find a fixed limiting threshold T∗ discussed next.

2.5.4. Fixed Threshold

A simple variant of the age-based thinning method is found when the threshold T(k) = T∗ is fixed

throughout the transmission phase. In particular, we design T∗ ahead of time based on the node

distribution in the stationary regime. By doing so, we cannot benefit from the collision feedback to

adaptively choose T(k). However, this framework is preferable for deriving analytical results.

We use the framework and derivation we developed for adaptive thinning in order to find a fixed

“optimal" T∗ that imposes an effective arrival rate approximately6 equal to 1/e. Note that a larger

arrival rate implies further random thinning of the packets to meet the fundamental rate 1/e (as

opposed to the selective nature of thinning by imposing age thresholding) and a smaller arrival rate

corresponds to inefficient utilization of the channel.

The major difference between an adaptive threshold and a fixed threshold is in the update rules

(2.20)-(2.23) because c(k) is not known when T∗ is designed. In particular, the update rule (2.20)-

(2.23) is replaced by an average rule that weighs c(k) = 1 with probability 1− 2
e and c(k) = 0 with

probability 2
e (following Lemma 15).

By the stationarity of the scheme, the limit of {`m(k)}∞m=0 and {`m(k+)}∞m=0 exist as k → ∞.

Denote the two limits by {`∗m}∞m=0 and {`+∗m }∞m=0, respectively. Similar with (2.18), the update rule

of Stage 1 implies

`+∗0 = (1− θ)`∗0

`+∗m = (1− θ)`∗m + a∗m m ≥ 1

(2.25)

where

a∗m = θ2
m−1∑
j=0

`∗j (1− θ)m−j−1 m ≥ 1. (2.26)

5A packet with a large age-gain must have a packet ready to transmit.
6This approximation is due to the integer nature of the age threshold.
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Since we let T(k) = T(k − 1) = T∗, the threshold proposed in Stage 2 is

T∗ = max
{
t|
∑
m≥t

a∗m ≥
1

eM

}
. (2.27)

Next, consider Stage 3. In contrast to Section 2.5.3, we do not utilize collision feedback in finding

T(k). So estimating the fraction of m-order nodes at the end of time slot k will account for c(k) = 1

with probability 1− 2
e and c(k) = 0 with probability 2

e (see Lemma 15). We hence obtain

`∗0 = `+∗0 +
1

eM

`∗m = `+∗m , 1 ≤ m ≤ T∗ − 1

`∗m = `+∗m −
r∗m
eM

, m ≥ T∗

(2.28)

where

r∗m = `+∗m /
∞∑
i=T

`+∗i .

Putting together (2.25) - (2.28), we obtain

`∗0 = (1− θ)`∗0 +
1

eM

`∗m = (1− θ)`∗m + a∗m, 1 ≤ m ≤ T∗ − 1

`∗m = (1− θ)`∗m + a∗m −
r∗m
eM

, m ≥ T∗

(2.29)

and conclude the following lemma (see Appendix A.8 for the proof).

Lemma 2. As k →∞, the stationary distributions {`∗m}m, {`+∗m }m and {a∗m}m satisfy the following
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properties:

`∗m =


1

eMθ m = 0

1
eM 1 ≤ m ≤ T∗ − 1

(2.30)

`+∗m =
1

eM
1 ≤ m ≤ T∗ − 1 (2.31)

a∗m =
θ

eM
1 ≤ m ≤ T∗. (2.32)

The closed form expression of the fixed threshold T∗ is given below (see Appendix A.9 for the proof)

and Algorithm 2 describes our stationary ge-based transmission policy.

Theorem 2. The fixed threshold T∗ in (2.27) has the following closed form expression:

T∗ = beM − 1

θ
+ 1c.

Remark 8. The threshold in Theorem 2 can be applied to the regime 0 < θ < 1
eM as well. In

particular, in this regime, the threshold is T∗ ≤ 0 and the proposed algorithm reduces to the slotted

ALOHA.

Algorithm 2 Stationary Age-based Thinning (SAT)
Set the time horizon K.
Set initial points: hi(0) = 1, wi(0) = 0 for i = 1, 2, · · · ,M ; c(0) = 0; pb(0) = 1; n(0) = 0; k = 1.
Calculate T∗ = beM − 1

θ + 1c.
repeat
Step 1: For transmitter i, compute δi(k) = hi(k) − wi(k), if δi(k) < T∗, then it does not
transmit packets; if δi(k) ≥ T∗, then it transmits a packet with probability pb(k).
Step 2: Calculate pb(k + 1) by (2.14) in which Mθ is replaced by min(Mθ, e−1).

until k = K
Calculate JSATK by (2.3).

We finally prove asymptotically (asM →∞) that the Stationary Age-based Thinning (SAT) policy

described in Algorithm 2 significantly reduces age when 1/θ = o(M). Recall that at θ = 1
eM , we

have limM→∞ J
SA(M) = e. For larger arrival rates θ where 1/θ = o(M), we prove that Algorithm 2

sharply reduces AoI from e to e
2 .
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Theorem 3. For any θ = 1
o(M) ,

lim
M→∞

JSAT (M) =
e

2
.

Remark 9. The minimum NAAoI attained by a stabilized slotted ALOHA is (asymptotically) e and

it is achieved at θ = 1
eM (See Theorem 1 and Fig. 2.4a). Theorem 3 shows that our proposed SAT

policy attains the NAAoI = e
2 (asymptotically) for θ = 1

o(M) . This provides a multiplicative factor

of 2 compared to the minimum NAAoI under slotted ALOHA. Moreover, simulation results show

that the AAT policy outperforms the SAT policy for θ = 1
o(M) (see Fig. 2.4a).

Proof. The proof is given in Appendix A.10. Here, we provide the road map of the proof. In every

time slot k, the sources can be divided into two groups: 1) sources with δi(k) < T∗; 2) sources with

δi(k) ≥ T∗. The first group of sources has the main contribution to JSAT (M) (which is equal to

e
2) when M → ∞. The contribution of the second group of sources to JSAT (M) vanishes when

M →∞.

2.5.5. Extensions to Other Random Access Technologies

So far, we restricted attention to slotted ALOHA as the main random access technology. However,

in the past decade, novel technologies such as Carrier Sensing Multiple Access (CSMA) technologies

have emerged and led to significant improvements in terms of throughput. It is interesting to

know how they perform with regard to age, especially since they are known to have large delays

[26, 27, 158, 159, 160, 161, 162, 163]. In this regard, [26, 27] have proposed an efficient sleep-wake

mechanism for wireless networks that attains the optimal trade-off between minimizing the AoI

and energy consumption. In [161], a network with M sources (links) under the CSMA scheme was

considered and the closed form of the average age of information was derived as a function of the

back-off time and generation rate. In [162], the notion of the broadcast age of information was

investigated in wireless networks with CSMA/CA technologies.

In this section, we outline how the age-based thinning method described in Section 2.5.4 (with a fixed
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threshold) can be applied to other random access technologies. For this purpose, we consider any

transmission policy π that does not employ coding across packets. All existing collision avoidance

and resolution techniques such as ALOHA and CSMA [164, 165, 166, 167] fall into this class.

Now develop a variant of the transmission policy π in which only the most recent packets of each

transmitter are preserved and all older packets are discarded. Denote this policy by π(1). Define

Cπ
(1)

(M) as the maximum sum throughput when applying the transmission policy π(1) in a system

with M sources, and denote the limit, when M → ∞, by Cπ(1) . Consider the age-based thinning

process in two steps: (i) the threshold T∗ is calculated, (ii) all nodes with age-gains larger than or

equal to T∗ become active and transmit using the prescribed random access technology7.

Consider M to be large, and suppose the expected number of delivered packets per time slot is

around min(Mθ,Cπ
(1)

). Therefore, (2.25) remains the same and (2.27) takes the following form:

T∗ = max

t|∑
m≥t

a∗m ≥
Cπ

(1)

M

 . (2.33)

Following a similar argument as in Section 2.5.4, the equations in (2.28) can be written more

generally as follows:

`∗0 = `+∗0 + min(θ,
Cπ

(1)

M
)

`∗m = `+∗m , 1 ≤ m ≤ T∗ − 1

`∗m = `+∗m − r∗m min(θ,
Cπ

(1)

M
), m ≥ T∗

(2.34)

where

r∗m = `+∗m /
∞∑
i=T∗

`+∗i .

7Here, “prescribed random access technology” refers to the specific transmission scheme which is applied to the
random access channel.
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Combining (2.25), (2.33), (2.34), we thus find

`∗0 =

 min(1, C
π(1)

Mθ ) m = 0

min(θ, C
π(1)

M ) 1 ≤ m ≤ T∗ − 1
(2.35)

`∗m = min(θ,
Cπ

(1)

M
) 1 ≤ m ≤ T∗ − 1 (2.36)

a∗m = min(θ2,
θCπ

(1)

M
) 1 ≤ m ≤ T∗. (2.37)

Moreover, the threshold T ∗ takes a simple closed-form expression as stated below (and proved in

Appendix A.11).

Theorem 4. The fixed threshold T∗ in (2.33) has the following closed form expression:

T∗ =

⌊
M

Cπ
(1)
− 1

θ
+ 1

⌋
.

Using this result, Algorithm 3 proposes a decentralized age-based thinning method that can be

applied to any given stationary random access technology.

Algorithm 3 Generalized Stationary Age-based Thinning (GSAT)
Set the time horizon K.
Set initial points: hi(0) = 1, wi(0) = 0 for i = 1, 2, · · · ,M ; c(0) = 0; pb(0) = 1; n(0) = 0; k = 1.
Calculate the threshold T(Cπ

(1)
) = b M

Cπ
(1) − 1

θ + 1c.
repeat
For the source node i, compute δi(k) = hi(k) − wi(k). If δi(k) < T(Cπ

(1)
) remain silent; If

δi(k) ≥ T(Cπ
(1)

), transmits according to the random access technology π(1).
until k = K
Calculate JGSATK by (2.3).

We prove an analogue to Theorem 3, showing that the Generalized Stationary Age-based Thinning

policy (GSAT) proposed in Algorithm 3 reduces age to 1

2Cπ
(1) as θ increases.
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Theorem 5. For any θ = 1
o(M) ,

lim
M→∞

JGSAT (M) =
1

2Cπ
(1)
.

Proof. The proof of Theorem 5 is given in Appendix A.12.

Remark 10. The results in this section are stronger than [25] in three aspects: (i) we gave a simple

and explicit expression for the threshold T∗, while the threshold has to be computed numerically in

[25]; (ii) we found the asymptotical NAAoI (limM→∞ E[JGSAT (M)]) analytically; (iii) the threshold

in this section can be applied not only to CSMA, but also to any other transmission policy.

Remark 11. The framework we have built, particularly Algorithm 3 and Theorem 5, can be directly

applied to other settings and multi-access technologies such as MAC with common information in

[168] and a queue-length-based MAC in [169]. These technologies can achieve sum capacity 1, like

CSMA, and their corresponding normalized age tends to 1
2 as M gets large.

2.6. Numerical Results
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Figure 2.2: NAAoI and success transmission probabilities.

In this section, we verify our findings through simulations. Figure 2.2a shows the normalized age

under adaptive and stationary age-based transmission policies for M = 50, 100, 500. For stationary

age-based policies, the normalized age converges to e
2 when M is large, validating our findings in
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Figure 2.3: NAAoI when M = 500 v.s θ ∈ ( 1
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Figure 2.4: NAAoI when M = 500 v.s θ ∈ (0, 1
M ].

Theorem 3.

The performance of the adaptive policy is better than that of the stationary age-based policy for

θ > 1
M and the efficacy (the gap between the two curves) increases with θ. Since the maximum sum

throughput of slotted ALOHA is 1
e , one may ask if this contradicts the lower bound of Proposition 2.

To answer this question, we remark that the adaptive age-based transmission policy is not a slotted

ALOHA scheme, and therefore the maximum throughput of slotted ALOHA would not apply. As

a matter of fact, Fig. 2.2b shows that the throughput of the scheme increases beyond 1
e with
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θ, supporting Proposition 1. This is because the AAT policy implicitly facilitates coordination

among the transmitters as they utilize the (estimated) age-age distribution for decision-making.

The throughput at θ = 1, as seen in Fig. 2.2b, is close to .48 which is consistent with the known

lower bound 0.4878 and upper bound 0.568 on the (information theoretic) channel capacity of

random access channels with feedback [170, 157]. It is interesting that the AAT policy can both

increase the throughput and decrease the AoI simultaneously when θ approaches 1.

One can also observe that the adaptive policy performs worse than the stationary policy for

1
eM ≤ θ ≤ 1

M . The SAT policy is designed as the stationary version of the AAT policy, thus

the SAT policy should not in principle outperform the AAT policy (assuming that our approxi-

mations of the estimates of the age-gain distribution are accurate). However, it is worthwhile to

discuss this counter-intuitive phenomenon and we expand on the underlying reason: We consistently

underestimate the threshold T(k) due to the integer nature of it, especially when θ is small. For

example, consider 1
eM−1 ≤ θ < 1

eM−2 . Note that
∑

m≥1 am(k) = θ, which is close to 1
eM . From

(2.19), in some slots, the event {
∑

m≥2 âm(k) < 1
eM } may occur (even if the estimate {âm(k)}m is

exactly accurate), so the threshold T(k) under the AAT policy would be 1 because T(k) is always an

integer. In these time slots, the AAT policy is reduced to the slotted ALOHA. Therefore, the frac-

tion of active nodes becomes large, the throughput decreases, and the age increases. On the other

hand, in the regime when 1
eM ≤ θ ≤ 1

M , the threshold T∗ = 2 under the SAT policy in every time

slot (see Theorem 2). Subsequently, the estimate of the age-gain distribution {ˆ̀m(k)}m is imprecise

(see Remark 6). Moreover, the imprecise estimates in (2.24) may aggravate the underestimation of

the threshold, and the closed-loop worsens the performance of the AAT policy. The effect is more

pronounced in the regime 1
eM ≤ θ ≤ 1

M where old packets are less frequently replaced with new

packets.

Finally, the age performances of our proposed distributed age-based policies are compared with the

lower bounds of Section 2.3, state-of-the-art distributed schemes such as [21], as well as centralized

Max-Weight policies such as [20]. For clarity of exposition, we consider two regimes of θ: θ ∈ ( 1
M , 1]

(see Fig. 2.3), and θ ∈ (0, 1
M ] (see Fig. 2.4). Fig. 2.4, in particular, shows that when θ ≤ 1

eM , the
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normalized age of slotted ALOHA coincides with centralized Max-Weight policies and the lower

bound of Proposition 2. When θ increases beyond 1
eM , our proposed age-based thinning methods

provide significant gains compared to randomized stationary and slotted ALOHA schemes. When

θ = 1
o(M) , the NAAoI of slotted ALOHA explodes, and we omit the curve of slotted ALOHA in

Fig. 2.3a. Finally, we numerically observe that the normalized age of the centralized Max-Weight

policy is approximately attained by stationary age-based thinning in perfect CSMA8 (see the green

square curve in Fig. 2.3b and Fig. 2.4b), where the length of one contention slot is set to be 1/100

[25, 171].

Next, we compare our proposed algorithms with policies in related works, such as a lazy version

of slotted aloha in [30], and variants of CSMA in [161, 26, 27]. Different from [30], we considered

a random access channel with re-transmission attempts for packets and used a slotted ALOHA

with time-variant transmission probability, while in [30], a channel without re-transmission and a

slotted ALOHA with a time-invariant transmission probability is investigated. More importantly,

we proposed a policy where the best threshold is found in every time slot, while a predetermined

threshold is given in [30]. Furthermore, we showed the performance analysis for arbitraryM sources

under arbitrary generation/arrival rate (in [0, 1]), while [30] only provided the closed form of average

AoI for the case when M = 2 and θ = 1. Compared to the performance of the policy in [30], our

proposed AAT and SAT policies outperform the lazy version of slotted aloha (see Fig. 2.3a, the

purple square curve). To apply the policies in [161] on our model, we consider the generation/arrival

rate is relatively large (θ ≥ 0.1) because under [161, Assumption 1], a transmitter sends a “fake”

update if its buffer is empty. From Figure 2.3b, it is easy to see that the stationary thinning

with CSMA outperforms the policy in [161] (Fig 2.3b, square black curve). References [26, 27]

are concurrent works on optimizing peak AoI over random access channels with per-source battery

lifetime constraints. Translating the introduced energy constraints to arrival rate θ, one can apply

the sleep-waking schemes of [26, 27] to our problem when CSMA capabilities are available. Using

the symmetry of our model along with [27, Eqns. (13), (16)], when M is sufficiently large, the

fraction of time in which every source is in transmission mode is around r/(Mr+ 1) where r is the
8We consider perfect CSMA in simulations. In other words, no errors occur in carrier sensing.
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sleep period parameter as proposed in [26, 27]. Using [27, Eqns. (13), (16)], one can argue that

we need to consider the so-called energy-adequate regime introduced in [26, 27] which translates to

relatively large θ, i.e., θ ≥ 0.1. The performance of the policy in [26, 27] (Fig 2.3b, red square point)

is similar to that of the stationary thinning with CSMA, which is consistent with the optimality

results presented in [26, 27].

It is worthwhile to mention that the proposed algorithms not only fully utilize channel capacity,

but minimize NAAoI. If we only consider policies with maximum throughput (e.g. standard slotted

ALOHA and its variants), the NAAoI explodes up with time for arrival rates above 1
e . This is

also observed in works such as [21] that adapt slotted ALOHA without packet management for age

minimization.

2.7. Conclusion and Future Research

In this work, we investigated the AoI performance of a decentralized system consisting M source

nodes communicating with a common receiver. We first derived a general lower bound on AoI.

Then, we derived the analytical (normalized) age performance of (stabilized) slotted ALOHA in the

limit of M → ∞. As the sum arrival rate increases beyond 1
e , slotted ALOHA becomes unstable.

We show that by prioritizing transmissions that offer a significant reduction in AoI, we can increase

the arrival rate and simultaneously decrease AoI. In particular, we proposed two age-based thinning

policies: (i) Adaptive Age-based Thinning (AAT) and (ii) Stationary Age-based Thinning (SAT)

and analyzed the age performance in the limit of M → ∞. Finally, we demonstrated how our

proposed thinning mechanism (SAT) is useful for other random access technologies. Numerical

results showed that the proposed age-based thinning mechanisms make a significant contribution

to the performance of age even for moderate values of M . Our framework can not be extended

to generalized settings (such as [172, 173, 174, 175]) blindly. Appropriate adaptations related to

different settings are necessary. For example, after applying Algorithm 3 to transmission schemes

in [173, 174], they are reduced to stationary randomized policies. This is because we do not fully

utilize the additional knowledge of the queue length that is provided in these settings. In the setting

of [172], we should further assume that the set of nodes that transmit packets are known, and a
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continuous-time version of the framework is needed in the setting of [175].

Future research includes generalization to accommodate 1) dynamic channels, i.e., the number of

nodes M , or the arrival rates θ are time-variant 2) asymmetric channels, i.e., the arrival rates θi

are different. In the first case, the method we proposed above can be applied directly. Suppose

that the expressions of the number of nodes, M(k), and the arrival rates, θ(k), are known. We

cane replace M and θ by M(k) and θ(k), respectively, in every time slot. Subsequently, the fixed

threshold hold T∗ is also a time-variant variable, T∗(k). In the second case, the method we proposed

above can not be applied directly. This is because we use the profile of all sources as an estimate on

any individual source. A more general estimation method should be proposed in the second case.

In addition, note that slotted ALOHA algorithms are order optimal when M is sufficiently large

and the generation/arrival rate is small (θ ≤ 1
eM ). An interesting extension is to consider a smarter

decentralized age-based algorithm that can achieve a constant additive age gap from the optimum

average age when θ is small.
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CHAPTER 3

Beyond AoI: Real-time Sampling and Estimation

The Internet of Things (IoT) paradigm is changing our conception of communications. In the

past decades, research has focused on various technologies to improve connectivity, rate, reliability,

and/or latency [15, 18, 20, 23, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,

189, 190]. But are such metrics representative of optimal multiple access system designs for future

IoT and cyber-physical systems (CPS) applications or do we need to go beyond these metrics?

Expanding on this question, it is important to note that in traditional designs, it is often assumed

that information bits (or packets) are processed and stored at the sources, waiting to be reliably

transmitted and replicated at the receiver node(s) with a high rate and low latency. However, in

many IoT applications, these assumptions are no longer realistic. Oftentimes, information is to be

collected and communicated in real-time. In such settings, rate, reliability, and latency may not

directly be relevant.

In this chapter, we consider the problem of real-time sampling and estimation over reliable and

unreliable random access channels with M Markov (autoregressive) physical processes (sources).

These processes are to be observed, sampled, and communicated wirelessly with a fusion center

for timely estimation. Considering applications in IoT and CPS, it is not realistic to assume a

central scheduler that monitors all the sensors for decision-making; we, therefore, seek to design

near-optimal decentralized sampling and communication strategies.

Towards understanding the problem of real-time sampling and estimation in the above setting, recent

works [32, 35, 36, 37, 46] have proposed centralized and decentralized multiple access schemes to

minimize the metric of AoI. Nonetheless, it has remained open to how such designs can inform near-

optimal designs when the desired metric of performance is the real-time estimation error (rather

than AoI as a proxy). The present work establishes this bridge and goes beyond AoI minimization.

Notations We use the notations E[·] and Pr(·) for expectation and probability, respectively.

Scalars are denoted by lowercase letters, e.g. s, and random variables are denoted by capital
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letters, e.g. S. The notation A ∼ B implies that A has the same distribution as B and N (µ, σ2)

stands for the Gaussian distribution with mean µ and variance σ2. The notations O(·) and o(·)

represent the Big O and little o notations according to Bachmann-Landau notation, respectively.

3.1. Literature Review

Sampling: Remote estimation of physical processes requires efficient sampling and communication

strategies that minimize not only the estimation error cost but also the sampling and transmission

costs. With this viewpoint, prior works have studied optimal sampling strategies and their structural

properties for various point-to-point scenarios. [38] designs optimal sampling strategies with limited

measurements. [39] studies the problem for continuous sources. [40] proves the joint optimality of

symmetric thresholding policies and Kalman-like estimators for autoregressive Markov processes.

[41] formulates a two-player team problem and designs efficient iterative algorithms. Systems with

energy harvesting sensors are considered in [42]. Noisy channels and packet drop channels are

considered in [43, 44]. The above-mentioned works have all considered single-user channels and the

developed methodologies do not generalize to random access networks with multiple sensors.

Reliable v.s. Timely communication: In estimation and control applications, timeliness of

communication is key and that is why traditional rate-distortion frameworks and channel coding

paradigms that propose asymptotic block coding solutions are not applicable. More importantly,

it is oftentimes observed that as the rate and/or reliability of compression/communication schemes

improve, their timeliness decrease. This aspect of sampling and remote estimation is barely studied

in the estimation literature. One of the few existing works in this direction is [45] which proposes

and optimizes a hybrid automatic repeat request (HARQ)-based remote estimation protocol and

improves the performance of the remote estimation systems compared to conventional non-HARQ

policies. Recently, tradeoffs between reliability/rate and the timeliness of communication have been

looked at in the context of age. In channels with queue constraints, [35] establishes a tradeoff

between AoI and rate. [46] finds the optimal blocklength of channel coding for minimizing AoI. [37]

provides a centralized scheduling framework to attain tradeoffs between rate and AoI in broadcast

channels. [36] proposes decentralized transmission strategies for random access channels that benefit

from the availability of fresh packets and improve both communication rate and AoI. It is known
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that AoI is closely related to the expected estimation error of schemes that are oblivious to the

processes they monitor [32]. Non-oblivious sampling schemes are, however, signal-dependent and

known to outperform oblivious schemes. In [32], threshold policies are shown to be optimal for

point-to-point channels with a random delay, and closed-form solutions are found for the optimal

threshold value. It is further shown that oblivious policies can be far from optimal.

Distributed decision making: In random access networks, a large number of sensors commu-

nicate with a single fusion center over a wireless channel. To avoid collisions, most works in this

direction have considered centralized oblivious policies that do not observe the process realizations

for decision-making (see, e.g., [47, 48, 49, 50, 51, 52, 53] and the references therein). In IoT ap-

plications, however, it is not realistic to assume a central scheduler that monitors all the sensors

for decision-making. We seek decentralized solutions in which each sensor decides when to sample

and transmit information based only on its local observations. In decentralized setups (and in the

context of control, rather than estimation) [54], [55] consider wireless control architectures with

multiple control loops over a random access channel and optimize the access rate of the sensors that

randomly communicate. Policies that adapt to the state of the systems are proposed in [56]. The

work [33] (which was carried out concurrently and independently) designs decentralized policies for

the remote estimation of i.i.d processes over a collision channel. Decision-making in both [56, 33] is

thresholding and based on the realization of the process (or a function of that). But since neither

of the two works exploits channel collision feedback, adaptations of them (or other policies that

impose fixed transmission probabilities on the channel) are far from optimal in our setup.

3.2. System Model

Consider a system with M statistically identical sensors and a fusion center. We often refer to the

sensor nodes as nodes or transmitters and the fusion center as the receiver/destination. For analysis

tractability, we focus on symmetric cases where all nodes have similar configurations. Let time be

slotted. Each node i, i = 1, 2, · · · ,M , observes a process {Xi(k)}k≥0 which is an autoregressive
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process as follows

Xi(k + 1) = γXi(k) + Λi(k) (3.1)

where Wi(k) ∼ N (0, σ2) and γ > 0. The processes {Xi(k)}∞k=0 are assumed to be mutually inde-

pendent across i and for simplicity we let Xi(0) = 0.

At the beginning of each time slot, the nodes have the capability to sample the underlying process

and decide whether or not to communicate the sample with the receiver. The communication

medium is modeled by a collision channel: If two or more nodes transmit in the same time slot,

then the packets interfere with each other (collide) and do not get delivered at the receiver. We

assume a delay of one-time units in delivery for packets. At the end of time slot k, all transmitters are

informed (through a low-rate feedback link) whether or not collision occurred, which is indicated

by an indicator c(k). If collisions happen in time slot k, then c(k) = 1; if a packet is delivered

successfully at the receiver or no packet is transmitted, then c(k) = 0. We further assume that

the buffer size of every transmitter is one packet and that new packets replace older undelivered

packets at the transmitter. This assumption relies on the fact that the underlying processes that

are monitored are Markovian.

The receiver estimates the process in every time slot based on the collection of the received samples.

Denote by X̂i(k) the estimate of Xi(k) in time slot k. We define the following normalized average

sum of estimation errors (NAEE) as our performance metric:

Lπ(M) = lim
K→∞

E[LπK ],

LπK(M) =
1

M2

M∑
i=1

1

K

K∑
k=1

(
Xi(k)− X̂i(k)

)2 (3.2)

where M is the number of sources, π ∈ Π refers to the sampling and transmission policy in place,

and Π is the set of all decentralized sampling and transmission policies. Note that the metric (3.2)

is normalized by M . This allows us to study the asymptotic performance in the regime of large M .

The minimum attainable NAEE is then denoted by L(M): L(M) = minπ∈Π L
π(M). Our objective

47



is to design decentralized sampling and transmission mechanisms to attain L(M).

Consider the ith node. Let {k(i)
` }`≥0 be the sequence of time slots at the end of which packets are

received at the destination from node i. In any time slot k, k(i)
`−1 < k ≤ k(i)

` , the latest sample from

node i is received at the end of k(i)
`−1 and since collisions may happen, then it is time-stamped at

the beginning of time k′ with k′ ≤ k
(i)
`−1. At the beginning of every time slot, the process of node i

is updated. So the age of information with respect to node i, denoted by hi(k), is

hi(k) = k − k(i)
`−1. (3.3)

Without loss of generality, assume k(i)
0 = 0. At the beginning of time slot k, the receiver knows the

information of all packets delivered before time k, i.e., {Xi(k
(i)
t )}`−1

t=0 and reconstructs X̂i(k) by the

minimum mean square error (MMSE) estimator:

X̂i(k) =E
[
Xi(k)|

{
Xi

(
k

(i)
t

)}`−1

t=0

]
.

For the class of policies that we consider in this paper (oblivious policies and symmetric thresholding

policies), the MMSE estimator reduces to a Kalman-like estimator:

X̂i(k) =E[Xi(k)|Xi(k
(i)
`−1)]. (3.4)

In particular, from (3.1) and (3.3), we have

Xi(k) = γhi(k)Xi

(
k

(i)
`−1

)
+

hi(k)∑
j=1

γj−1Wi(k − j). (3.5)

Note that E[Wi(k)] = 0 for all i, k, then, Kalman-like estimator in (3.4) is:

X̂i(k) = E[Xi(k)|Xi(k
(i)
`−1)] = γhi(k)Xi(k

(i)
`−1). (3.6)

One of the major challenges in this problem arises from the decentralized nature of decision-making.
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A decentralized policy is one in which the action of each node is only a function of its local observa-

tions and actions. In this setup, the action of node i at time k depends on the history of feedback

and actions as well as casual observations of the process {Xi(j)}j≤k.

3.3. Error-based Thinning Policies

As discussed before, we consider the policies in which the nodes can observe their corresponding

Markov processes for decision-making. Clearly, if all nodes try to transmit their samples at every

time slot, no packet will go through due to collisions. The nodes, therefore, need to transmit packets

at a lower rate. This means that they have to decide, in a decentralized manner, when to transmit.

Motivated by the optimality of threshold policies in various point-to-point setups [32, 38, 42, 39],

as well as their applications in age minimization over many-to-one random access channels [37], we

propose threshold policies for decision making.

Define the error process ψi(k) at node i as follows:

ψi(k) = |Xi(k)− X̂i(k)|. (3.7)

Since the transmitters have access to collision feedback, they can calculate X̂i(k), and hence ψi(k),

in each time slot and use this information for decision making. One way to understand ψi(k) is

as follows. In time k, if the sample of node i is successfully delivered, the estimation error will

reduce by ψi(k). So ψi(k) quantifies the amount of instantaneous estimation error reduction upon

successful delivery from transmitter i. With this viewpoint, we devise a threshold policy in which

transmitters prioritize packets that have large ψi(k). In particular, we design a fixed threshold β to

distinguish and prioritize nodes that offer a high instantaneous gain.

The action of each node is thus as follows: node i becomes “active" if the error process ψi(k) has

crossed a pre-determined threshold β. Once a transmitter is active, it remains active until a packet

is successfully delivered from that node. Active nodes transmit stochastically following Rivest’s

stabilized slotted ALOHA protocol [152, Chapter 4.2.3]. Denote the number of active nodes and an

estimate of the number of active nodes in time slot k as N(k), N̂(k), respectively. In particular, each
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active node transmits its sample with probability pb(k) which is calculated adaptively as follows

based on an estimate of the number of active nodes9:

pb(k) = min(1,
1

N̂(k)
)

N̂(k) =


N̂(k − 1) + λ̂(k) + (e− 2)−1 if c(k − 1) = 1

λ̂(k) +
(
N̂(k − 1)− 1

)+

if c(k − 1) = 0.

(3.8)

Here, λ̂(k) is an estimate of λ(k), and λ(k) is the sum arrival rate in time slot k. It is well-known

that the maximum sum throughput of the slotted ALOHA is e−1 [152, Chapter 4.2.3] and the regime

of interest is λ(k) < e−1 when k is sufficiently large. In our setup, λ(k) corresponds to the expected

number of nodes that become active in time slot k (see Definition 3 ahead). We refer to λ(k) as the

activation rate or the effective arrival rate in time slot k.

So far, we have outlined a threshold policy in which a node decides to become active if its local

error process is larger than a predetermined threshold value β. We call this procedure Error-based

Thinning (EbT). The main underlying challenge is, however, in the design of the optimal β. In the

rest of the paper, we will find an approximately optimal choice for β in different regimes of γ and

analyze the corresponding NAEE. We start with some preliminaries.

3.3.1. Preliminaries

Consider node i and an inter-delivery interval (k
(i)
`−1, k

(i)
` ] (see Figure 3.1). The inter-delivery time

I
(i)
` is given by I(i)

` = k
(i)
` − k

(i)
`−1. For any time slot k, k(i)

`−1 < k ≤ k(i)
` , based on (3.5), we can write

the error process ψ(k) as follows:

ψi(k) = |Xi(k)− X̂i(k)| =
∣∣∣ hi(k)∑
j=1

γj−1Wi(k − j)
∣∣∣. (3.9)

Note that the term on the right-hand side of (3.9) is the sum of hi(k) weighted independent Gaussian

noise variables, and weights are the functions of γ. Indeed, (3.9) demonstrates that ψi(k) contains

both the information of sample values as well as the age with respect to source i.
9Since the sensors have unit buffer sizes, the number of “backlogged" nodes N(k) in Rivest’s algorithm is at most

M . One notes that this has been incorporated in (3.8).
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Figure 3.1: An example of J (i)
` , U (i)

` , and I(i)
` : packets are generated at the beginning of every time

slot, so J (i)
` arrivals/generations means J (i)

` − 1 time slots.

We next define “active” nodes as follows.

Definition 3 (Active Nodes). If there exists a time slot k0 ∈ (k
(i)
`−1, k

(i)
` ] such that (i) ψi(j) < β

for all k(i)
`−1 < j < k0 and (ii) ψi(k0) ≥ β, then we say that node i is active in the entire interval

[k0, k
(i)
` ].

Definition 4 (Silence Delay and Transmission Delay). Let k0 be as defined in Definition 3. We

define J (i)
` = k0 − k(i)

`−1 as the silence delay, and U (i)
` = k

(i)
` − k0 + 1 as the transmission delay (see

Figure 3.1).

An active source becomes inactive immediately after a successful delivery. By the above two def-

initions, the inter-delivery time I(i)
` consists of two components – the silence delay J

(i)
` and the

transmission delay U (i)
` :

I
(i)
` = J

(i)
` − 1 + U

(i)
` . (3.10)

In this equation, J (i)
` is the first time slot after k(i)

`−1 at which ψi(k) ≥ β (as defined in Definition 4).

So J (i)
` − 1 represents the number of time slots in which node i is not active, and U (i)

` represents

the number of time slots in which node i is in active state. Recall that active nodes transmit

with probability pb(k). So U (i)
` may be larger than 1 either because the node is active and it does

not transmit or because the node transmits and experiences collision. By the stationarity of the

transmission scheme, the processes {I(i)
` }i,`, {J

(i)
` }i,`, and {U

(i)
` }i,` are statistically identical across

i and `. We define Iβ , Jβ , and Uβ to have the same distributions as {I(i)
` }i,`, {J

(i)
` }i,`, and {U

(i)
` }i,`,

respectively.
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Let a(k) denote the number of newly active nodes at time k, i.e., the number of nodes that become

active from inactive states. We have E[a(k)] = λ(k), where λ(k) is the expected sum arrival rate

in time slot k (imposed by our sampling and transmission policy) [152, Chapter 4.2.3]. Now recall

that in a traditional slotted Aloha-based random access channel, the maximum sum throughput is

asymptotical e−1. This is true also for the case with buffer size 1 where only the latest packets are

stored, as discussed in [37, Appendix E]) and which applies to our setting here. Define c(M) as the

sum rate/throughput when the system contains M sources.

Definition 5. The random access system is stabilized10 if λm = lim supk→∞ λ(k) < e−1.

We provide our analysis under the following two assumptions:

Assumption 1. Under an optimal β, when M is sufficiently large, {a(k)}∞k=1 are approximately

independent.

Assumption 2. Under an optimal β, when M is sufficiently large, the random access system is

stabilized, and λm ≈ e−1, c(M) ≈ e−1.

Assumptions 1, 2 are given for analysis tractability, and we will verify them for our proposed β

later. In the rest of the paper, let M be sufficiently large. We seek to find an optimal β under

assumptions 1, 2. To transmit as many fresh samples as possible, β is designed such that λ(k) is

as large as possible. Thus, we focus on the regime where λ(k) is close to e−1 when k is large, and

from Assumption 2, λm ≈ e−1. For tractability in analysis, we let the estimate λ̂(k) = e−1 for all

k. Specifically, we replace λ̂(k) with e−1 in (3.8).

Note that the system is stationary, so U (i)
` (or Uβ) is a random variable and measurable. Recall from

[191, Chapter 7.5.1, Lemma 7.5.1], Jβ has finite moments of all orders. Therefore, Iβ is measurable.

Now, we first show that the (strong) law of large numbers holds for {I(i)
` }`. We remark that while

{I(i)
` }` is not independent, it is weakly correlated across `, as we prove in Appendix B.1. We can

10Here, contrary to traditional slotted ALOHA schemes, the term “stabilized” does not refer to “stability of queues"
in our problem setup. However, the term “stabilized” implies that the system is stationary when the sum arrival rate
is less than e−1.
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thus conclude that the strong law of large numbers holds for {I(i)
` }`, see also [192].

Recall that N(k) is the number of active nodes at the beginning of time slot k. The fraction of

active nodes at the beginning of time slot k is hence N(k)/M .

Definition 6. Define αβ(k) as the expected fraction of active nodes:

αβ(k) =
E[N(k)]

M
. (3.11)

If β = 0, then all nodes are active and α0(k) = 1; if β = +∞, then all nodes are inactive and

α+∞(k) = 0. In the limit of k →∞, we denote the expected fraction of active nodes by αβ :

αβ = lim
k→∞

E[N(k)]

M
= lim

k→∞
E
[ 1

M

M∑
i=1

1(node i is active at time k)
]
. (3.12)

The limit in (3.12) exists because the transmission policy is stationary and hence the sequence in

the expectation above is stationary in the steady state. Continuing from (3.12), we have

αβ = lim
K→∞

E
[ 1

MK

K∑
k=1

M∑
i=1

1(node i is active at time k)
]

(a)
= E

[
lim
K→∞

1

MK

K∑
k=1

M∑
i=1

1(node i is active at time k)
]
.

(3.13)

where step (a) holds by the dominated convergence theorem because the sequence in the expectation

(3.13) is a fraction and bounded by 1. Utilizing the symmetry and stationarity with respect to

various nodes (the system), we prove the following lemma in Appendix B.2, signifying that αβ

represents the fraction of time that each node is active in the limit of K →∞, hence representing

the probability of each node being active when the system is steady.

Lemma 3. When the system is stabilized, αβ exists, and αβ =
E[Uβ ]
E[Iβ ] .

Since αβ exists, then, when k →∞, the expected number of nodes that become active in every time
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slot is (1− αβ)Mαβ , and

(1− αβ)Mαβ = lim
k→∞

λ(k) = lim sup
k→∞

λ(k) = λm. (3.14)

From Assumption 2, λm ≈ e−1 < 1. Using (3.14), one sees that Mαβ is an infinitesimal of a higher

order than M . Now using Lemma 3, we can show that E[Uβ] is an infinitesimal of a higher order

than M , as discussed in the following lemma.

Lemma 4. When the system is stabilized,

E[Iβ] =
M

c(M)
(3.15)

E[Uβ] =
M

c(M)
αβ = o(M) (3.16)

where αβ is the expected fraction of active nodes in the steady state as defined in (3.12).

Remark 12. Lemma 4 coincides with one’s intuition. Recall that the throughput of the channel

is c(M), so the throughput for each node is c(M)
M (due to the symmetry). From the perspective of

expectation, every successful delivery takes M
c(M) time slots, i.e., E[Iβ] = M

c(M) . In addition, note

that the expected number of active nodes is Mαβ, so the throughput of every active node is c(M)
Mαβ

.

Again, from the perspective of expectation, every successful delivery from active nodes takes M
c(M)αβ

time slots, i.e., E[Uβ] = M
c(M)αβ.

Proof. The proof of Lemma 4 is given in Appendix B.3.

3.4. Optimal Threshold in Regime of γ = 1

We start with a standard case where γ = 1. The error process ψ(k) defined in (3.9) is reduced to:

ψi(k) = |Xi(k)− X̂i(k)| =
∣∣∣ k−1∑
j=k

(i)
`−1

Wi(j)
∣∣∣. (3.17)
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To provide a better picture of the solution of optimal β∗, we first consider a simpler class of policies,

called oblivious policies, in Section 3.4.1. The actions in oblivious policies depend only on the

history of feedback and actions at that node. Then, we design and analyze a general decentralized

mechanism, called non-oblivious policies where decision-making depends on the observed processes,

that outperform oblivious schemes in minimizing the expected average estimation error in the rest

of the Section.

3.4.1. Oblivious Policies and Age of Information

We first define the oblivious policies as the policies where actions of each node depend only on

the history of feedback and actions at that node. In particular, oblivious policies do not take into

account the realization (value) of the samples, but only the time they were sampled, transmitted,

and received (if successfully received). Note that oblivious policies are independent of the processes

they observe and they are therefore less costly to implement. Moreover, they can still benefit

from the channel collision feedback to (i) quantify how stale the information at the receiver has

become (in order to decide when to sample and communicate) and (ii) adapt to the channel state

(for communication purposes). In this sub-section, we show that minimizing NAEE in the class of

oblivious policies is equivalent to minimizing the normalized average sum of AoI (NAAoI) as we

have previously defined in [37].

Now, based on (3.17), we establish the following relationship between the expected estimation error

and the expected age.

Lemma 5. In oblivious policies, the expected estimation error associated with process i has the

following relationship with the expected age function:

E[
(
Xi(k)− X̂i(k)

)2
] = E[hi(k)]σ2. (3.18)

Proof. The proof of Lemma 5 is given in Appendix B.4.

Remark 13. Lemma 5 does not hold for non-oblivious policies. As a matter of fact, finding
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E[
(
Xi(k) − X̂i(k)

)2
] in closed-form is non-trivial and its numerical computation can be intractable

when M is large. The reason is that even though the estimation error is the sum of hi(k) Gaus-

sian noise variables, once we condition on hi(k), their distributions change because hi(k) can be

dependent on the process that is being monitored.

Lemma 5 is reminiscent of [193, Lemma 4]. Using Lemma 5, the metric NAEE in (3.2) can be

re-written as follows:

Lπ(M) = lim
K→∞

σ2Jπ(M) (3.19)

where

Jπ(M) =
1

M2

M∑
i=1

1

K

K∑
k=1

E[hπi (k)]. (3.20)

Note that Jπ(M) is only a function of the age function hπi (k). The metric in (3.20) is the NAAoI

defined in [37] and, therefore, the decentralized threshold policies of [37] apply directly. Note that

the generation rate of packets for every sensor is θ ∈ (0, 1] in [37], while θ should be set to 1 in

the model defined in Section 3.2. This is because we assume that sensor i can observe the process

{Xi(k)}k for every k. In particular, [37, Algorithm 2] outlines a stationary age-based thinning (SAT)

policy in which a source transmits only when the corresponding AoI is larger than a predetermined

threshold. Using this algorithm, it was shown that the following age performance can be achieved

in the limit of large M :

lim
M→∞

JSAT(M) =
e

2
(3.21)

lim
M→∞

LSAT(M) =
e

2
σ2. (3.22)

Results from [37, Proposition 1] also lead to the following lower bound on NAAoI Jπ(M) for any
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decentralized policy π:

lim
M→∞

Jπ(M) ≥ .88. (3.23)

Using (3.22) and (3.23), we arrive at the following proposition.

Proposition 4. The minimum attainable NAEE in the class of oblivious policies is characterized

by the following bounds

.88σ2 ≤ lim
M→∞

L̄(M) ≤ e

2
σ2. (3.24)

We compare the SAT policy in [37, Algorithm 2] with an oblivious centralized policy – the Max-

Weight (MW) policy [20, 36, 37].

Definition 7. At the beginning of each slot k, the MW policy chooses the action i∗ such that

hi∗(k) = max
i
hi(k). (3.25)

Note that this policy is exactly the MW policy derived in [20] for age minimization. From Lemma 2

in [13, Section III], the policy defined in Definition 7 is optimal.

Proposition 5. The MW policy in Definition 7 minimizes the one-slot Lyapunov Drift in each slot,

and

lim
M→∞

LMW (M) =
σ2

2
. (3.26)

Proof. The proof of Proposition 5 is given in Appendix B.5.
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Comparing (3.22) with (3.26), we have

lim
M→∞

LSAT (M)

LMW (M)
= e.

The NAEE of the decentralized SAT policy is e times that of the optimal centralized policy in the

limit of largeM . The conclusion coincides with one’s intuition: the throughput of the decentralized

SAT policy in [37] is e−1, while the throughput of the centralized MW policy is 1, which implies the

amount of delivered fresh packets in the centralized MW policy is e times that of the decentralized

SAT policy. We illustrate their performances through simulations in Section 3.8.

3.4.2. Non-oblivious Policies

We now consider a more general class of policies in which the nodes can observe their corresponding

Markov processes for decision-making. In other words, we seek to benefit from not only the AoI but

also the process realization (in a casual manner).

Let {Wj}j be an i.i.d sequence with the same distribution as {Wj(k)}j . Define

Sn =

n∑
j=1

Wj . (3.27)

Using the definition of hi(k) in (2.1), and by the stationarity of {Wj}j , we conclude that the error

process in (3.17) has the following distribution,

ψi(k) ∼ |Shi(k)|. (3.28)

Recall that Jβ has the same distribution as J (i)
` . Then, Jβ is the smallest time index at which |Sn| ≥

β in an inter-delivery interval. Jβ is a stopping time for Sn. From [191, Chapter 7.5.1, Lemma 7.5.1],

it follows that Jβ has finite moments of all orders. Moreover, using [191, Chapter 7.5.2], we have

E[S2
Jβ

] = σ2E[Jβ]. (3.29)
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Finding an optimal β is non-trivial because β impacts both Jβ and Uβ . In the remainder of this

section, we establish some useful expressions for the expectations of Iβ and Uβ in an optimal design.

3.4.3. The closed form of NAEE

We next derive a closed-form expression for the attained NAEE, LEbT (M). Using (3.28), we re-write

(3.2) as follows.

LEbT (M) = lim
K→∞

E[
1

M2K

M∑
i=1

K∑
k=1

S2
hi(k)]. (3.30)

Define ∆
(i)
` as the sum of S2

hi(k) in the interval k ∈ (k
(i)
`−1, k

(i)
` ]:

∆
(i)
` =

k
(i)∑̀

k=k
(i)
`−1+1

S2
hi(k). (3.31)

Since hi(k) has the same distribution in the interval [k
(i)
`−1 + 1, k

(i)
` ] over i and `, then ∆

(i)
` has the

same distribution over i and `. We define ∆β to have the same distribution as ∆
(i)
` . The next

lemma shows that the expected time average in (3.30) takes a closed form expression in terms of

E[∆β] and E[Iβ].

Lemma 6. The proposed EbT policy attains the following NAEE:

LEbT (M) =
1

M

E[∆β]

E[Iβ]
. (3.32)

Proof. The proof of Lemma 6 is given in Appendix B.6.

Similar to (3.31), ∆β can be expressed as

∆β =

Iβ∑
j=1

S2
j . (3.33)

59



From (3.33), the NAEE in (3.32) can now be re-written as follows

LEbT (M) =
1

M

E
[∑Iβ

j=1 S
2
j

]
E[Iβ]

=
1

M

E
[∑Jβ+Uβ−1

j=1 S2
j

]
E[Iβ]

, LEbT1 (M) + LEbT2 (M) (3.34)

where

LEbT1 (M) =
1

M

E
[∑Jβ

j=1 S
2
j

]
E[Iβ]

(3.35)

LEbT2 (M) =
1

M

E
[∑Jβ+Uβ−1

j=Jβ+1 S2
j

]
E[Iβ]

=
1

M

2E[Jβ](E[Uβ]− 1) + E[U2
β ]− E[Uβ]

2E[Iβ]
σ2. (3.36)

The equality in (3.36) is proved in Appendix B.7. Note that LEbT is a function of the peak age Iβ ,

the silence delay Jβ , the transmission delay Uβ , and the process realization through Wj .

3.4.4. Optimizing β Approximately

Finally, we find approximate closed-form expressions for LEbT1 (M) and LEbT2 (M). Let M be suffi-

ciently large. Using (3.16) along with the the fact that E[Jβ] ≤ E[Iβ], one can simplify (3.36) in the

limit of large M :

LEbT2 (M) =
1

M
·
E[U2

β ]

2E[Iβ]
σ2. (3.37)

The following lemma comes in handy in our approximations.

Lemma 7. Consider a Brownian motion Bt. Define J = inf{t ≥ 0, |Bt| ≥ a}. The following holds:

(1) [194, Chapter 7, Theorem 7.5.5, Theorem 7.5.9] E[J ] = a2 and E[J2] = 5a4

3 ;

(2) E[
∫ J

0 B2
t dt] = 1

10E[J2] = 1
6a

4.

Proof. The proof of Lemma 7 is given in Appendix B.8.

For any j, Sjσ is Gaussian with mean zero and variance j. We propose to use Bj as an approximation
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of Sjσ . Letting a = β/σ in Lemma 7, we obtain

E
[
Jβ] ≈ β2

σ2
, E[J2

β ] ≈ 5β4

3σ4
(3.38)

E
[ Jβ∑
j=1

S2
j

]
≈ β4

6σ2
≈ 1

10
E[J2

β ]. (3.39)

The approximation error analysis is provided in Section 3.4.5.

Substituting (3.39) into (3.34), we find the following approximation for LEbT :

L̂EbT (M) =
1
5E[J2

β ] + E[U2
β ]

2ME[Iβ]
σ2. (3.40)

Theorem 6. Let M be sufficiently large. The optimal β∗ is approximately given by

β∗ ≈ β̂ = σ
√
eM,

and

L̂EbT =
e

6
σ2. (3.41)

Proof. The detailed proof of Theorem 6 is given in Appendix B.9. Here, we only provide a roadmap

of the proof. (i) After simplifying L̂EbT (M) in (3.40) by using (3.10), (3.15), (3.16), (3.38), we find

L̂EbT (M) ≈
M2

c(M)2
− 2β4

3σ4 +V ar(Uβ)

2 M2

c(M)

σ2. (ii) We show that the term V ar(Uβ∗ )

2 M2

c(M)

is negligible. (iii) We derive

β∗ ≈ β̂ = σ
√

M
c(M) as an (approximate) minimizer of NAEE. This leads to L̂EbT = 1

6c(M)σ
2.

Finally, Assumptions 1, 2 are verified (approximately) for β∗ when M is sufficiently large in Ap-

pendix B.10.

It is interesting to compare the performance of the proposed EbT policy with the oblivious decen-

61



tralized and centralized policies of Section 3.4.1. From (3.19), (3.20), and (3.21),

lim
M→∞

LSAT (M) =
e

2
σ2.

using (3.22) and (3.41), we obtain

lim
M→∞

LSAT (M)

L̂EbT (M)
≈ 3. (3.42)

The NAEE of the oblivious SAT policy is around three times that of the EbT policy. From (3.24),

the NAEE of the oblivious MW policy of Section 3.4.1 is asymptotic σ2

2 and comparing with e
6σ

2 =

0.455σ2 one concludes that the NAEE of the EbT policy is close to that of the oblivious MW policy.

We remark that since L̂EbT (M) is an estimate of LEbT (M), these comparisons are not exact. We

will also compare the numerical performance of Algorithm 4 with oblivious policies as well as other

state-of-the-art algorithms in Section 3.8. Algorithm 4 below summarizes the proposed decentralized

error-based transmission policy.

Algorithm 4 Error-based Thinning (EbT)
Set the time horizon K.
Set hi(0) = 1, Xi(0) = X̂i(0) = 0 for 1 ≤ i ≤ M ; c(0) = N̂(0) = 0; pb(0) = k = 1. Set
β∗ = σ

√
eM .

repeat
Step 1: For each node i, observe the collision feedback c(k − 1) at the end of time slot k − 1,
and update k(i)

` ’s and X̂i(k), respectively.
Step 2: For each node i, observe Xi(k)

(
which evolves according to (3.1)

)
and compute ψi(k)

by (3.7).
Step 3: If ψi(k) < β∗, then node i keeps silent; otherwise it transmits a packet with probability
pb(k).
Step 4: Calculate pb(k) by (3.8) in which λ(k) = e−1.

until k = K
Calculate

LEbTK =
1

M2

M∑
i=1

1

K

K∑
k=0

ψ2
i (k).
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3.4.5. Approximation Error Analysis

Note that approximations are used in (3.38) and (3.39), now we analyze the approximation error

in terms of σ2. The approximation error of LEbT consists of (i) the approximation error in (3.38)

and (ii) the approximation error in (3.39), both of which are incurred when approximating an

autoregressive Markov process with a Wiener process. In other words, the approximation error is

due to the discretization of the Wiener process. This discretization is analyzed by the Langevin

dynamics in [195]. In particular, Snσ =
∑n

i=1Wi ≈ Bn can be regarded as an overdamped Langevin

dynamics with step size 1 to approximate the Brownian motion. The approximation error in each

step remains constant due to the unit step size.

We first consider E[Jβ]. Substituting β = σ
√
eM into a = β/σ in Lemma 7, we find a =

√
eM

is constant. So the distribution of J in Lemma 7 does not change when σ changes. Thus, the

approximation error in (3.38) keeps invariant when σ changes.

Then, we consider (3.39). Jβ is an approximation of J , and

Jβ∑
j=1

S2
j = σ2

Jβ∑
j=1

S2
j /σ

2. (3.43)

The distribution of J does not change with σ, nor does the distribution of Jβ . The terms Sj
σ ∼

N (0, j) inside the sum in (3.43) are independent of σ. The distribution of
∑Jβ

j=1 S
2
j /σ

2 does not

change with σ. Thus, the approximation error in (3.39) increases linearly with σ2.

By Lemma 7 (2), E[J2] = 10E[
∫ T

0 B2
t dt]. Recall that the approximation error in (3.39) increases

linearly with σ2, thus the approximation error in E[J2] also increases linearly with σ2. From (3.40),

the approximation error in LEbT (M) increases linearly with σ2.

3.5. Optimal Threshold in Regime of γ < 1

In this section, we consider the case when 0 < γ < 1. From the definition of oblivious policies,

decision-making is independent of observed processes. Then, the oblivious policies essentially in-

vestigate the minimization of age instead of sample values. So, the oblivious policies, in this case,
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are the same as those in Section 3.4.1. We only consider the non-oblivious policies, i.e., the EbT

policies. Recall that {Wj}j is an i.i.d sequence with the same distribution as {Wj(k)}j . We re-define

Sn in (3.27) as a general way

Sn =
n∑
j=1

γj−1Wn−j . (3.44)

For simplicity, define S0 = W0 = 0. From (3.44), the recursion of Sn can be written as

Sn = Wn + γSn−1, n ≥ 1. (3.45)

Then, from (3.9) and (3.44), we have ψi(k) ∼ |Shi(k)|. From (3.45), {Sn}n is a stationary AR(1)

[196].

Due to the complexity of (3.45), it is complicated to obtain the closed-form of E[
∑Jβ

j=1 S
2
j ] or

approximations, hence it is complicated to obtain L̂EbT (M). To find (approximate) optimal β∗, we

revisit Lemma 3 and Lemma 4, and start with the derivations of (3.14). Under an optimal threshold

β∗, from Lemma 3, αβ∗ =
E[Uβ∗]
E[Iβ∗]

, and from (3.14), we have

(1−
E[Uβ∗]

E[Iβ∗]
)
E[Uβ∗]

E[Iβ∗]
=
λm
M

,

which implies

E[Uβ∗]

E[Iβ∗]
=

1

2
·
(

1−
√

1− 4λm
M

)
, (3.46)

and from (3.10), we have E[Iβ∗] = E[Jβ∗]− 1 + E[Uβ∗], hence

E[Jβ∗] =
1

2
·
(

1 +

√
1− 4λm

M

)
E[Iβ∗] + 1. (3.47)
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From Lemma 4, E[Jβ∗] has the following closed form

E[Jβ∗] =

(
1 +

√
1− 4λm

M

)
M

2c(M)
+ 1. (3.48)

Remark 14. From (3.48), E[Jβ] can be represented as a function of channel characteristics, i.e.,

the maximum effective arrival rate λm and the channel throughput c(M), instead of β∗.

The rest task is to find another closed form of E[Jβ], which can be written as a function of the

threshold β. Recall that Jβ is the smallest time index at which |Sn| ≥ β in an inter-delivery

interval. And note that Sn is a stationary AR(1) with Wn ∼ N (0, σ2). From [197, Corollary 1], we

have

E[Jβ] =
1

| log γ|

∫ ∞
0

(
E[cosh(uSJβ )]− cosh(uS0)

)
exp

(
− u2σ2

2(1− γ2)

)
· du
u
, (3.49)

where cosh(x) = ex+e−x

2 . Since we consider M is sufficiently large, then from Lemma 4, E[Jβ∗ ] is

sufficiently large, thus the optimal threshold β∗ and |SJβ∗ | are also large. From the definition of

Jβ∗ , we have |SJβ∗ | ≥ β∗, then
|SJβ∗ |
β∗ ≈ 1. Recall that S0 = 0, thus

E[Jβ∗ ] ≈
1

| log γ|

∫ ∞
0

(
cosh(uβ∗)− 1

)
exp

(
− u2σ2

2(1− γ2)

)
· du
u
. (3.50)

Now, we can calculate the optimal threshold approximately by the following theorem.

Theorem 7. Given any 0 < γ < 1 and σ, an approximate of the optimal threshold, i.e., β∗, is the

solution of (3.51),

∫ ∞
0

(
cosh(uβ)− 1

)
· exp

(
− u2σ2

2(1− γ2)

)
· du
u

= | log γ|
((1 +

√
1− 4λm

M

)
M

2c(M)
+ 1
)
. (3.51)

Remark 15. Note that cosh(uβ) increases with β for any given u. So there exists a unique solution

β∗ in (3.51).

Proof. Combine with (3.48) and (3.50), we have the desired results.
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Corollary 1. Given any 0 < γ < 1 and σ, an approximate of the optimal threshold, i.e., β∗, is the

solution of (3.52),

∫ ∞
0

(
cosh(uβ)− 1

)
· exp

(
− u2σ2

2(1− γ2)

)
· du
u

= | log γ|
((1 +

√
1− 4

eM

)
eM

2
+ 1
)
. (3.52)

Proof. From Appendix B.10, under an optimal β∗, Assumption 2 holds, so we have λm ≈ e−1,

c(M) ≈ e−1. Substituting λm ≈ e−1, c(M) ≈ e−1 to (3.51), we have the desired results.

3.6. Optimal Thereshold in Regime of γ > 1

Now, we consider the case where the processes are explosive, i.e., γ > 1. Similar to Section 3.5, we

only consider the non-oblivious policies, i.e., the EbT policies. This is because the oblivious policies

essentially investigate the minimization of age instead of sample values. So for the oblivious policies,

we can use the results in Section 3.4.1 directly. From (3.44) and (3.45), {Sn}n is an explosive AR(1)

sequence when γ > 1, and there is no closed form for E[Jβ] [198]. In this section, we find a numerical

calculative method for E[Jβ].

Firstly, we introduce a joint distribution. For any given n, the joint cumulative distribution function

of (S1, S2, · · · , Sn), denoted by P(n, β, σ2Σn), is

P(n, β, σ2Σn)

=

∫
On

1

(2π)n/2|σ2Σn|
exp

{
− 1

2
xT (σ2Σn)−1x

}
dx,

(3.53)

where x is a n-dimension vector, On = (−∞, β)n, and

Σn =



1 γ · · · γn−1

γ 1 · · · γn−2

...
... · · ·

...

γn−1 γn−2 · · · 1


. (3.54)

is the covariance matrix of (S1, S2, · · · , Sn). Then, the probability for {Jβ = t} can be calculated
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as
Pr
(
Jβ = t

)
= Pr{|S1| < β, · · · , |St−1| < β, |St| ≥ β}

=P(t− 1, β, σ2Σt−1)− P(t, β, σ2Σt).

(3.55)

Note that Σn in (3.54) is not necessary positive definite when γ > 1, and P(n, β, σ2Σn) in (3.53)

can not even be calculated numerically when n is large. Therefore, we need to find an estimate of

(3.55).

Now, we consider the random variable γ−tSt. From [198, Lemma 1], the limit of random variable

γ−tSt exists, and

γ−tSt → L0, t→∞ a.s., (3.56)

where

L0 =
∞∑
i=1

γ−iWi ∼ N (0,
γ−2σ2

1− γ−2
). (3.57)

From (3.56), define S̃t = γtL0, then St → S̃t a.s. when t→∞. We argue that given t is sufficiently

large, Pr(Jβ = t) in (3.55) can be approximated by,

Pr(Jβ = t) ≈ 2
(

Φ
( β√1− γ−2

γt−1 · (σ/γ)

)
− Φ

(β√1− γ−2

γt · (σ/γ)

))
. (3.58)

In fact, since St → S̃t a.s. when t→∞, then when t is sufficiently large, from (3.55),

Pr
(
Jβ = t

)
≈ Pr{|S̃1| < β, · · · , |S̃t−1| < β, |S̃t| ≥ β}. (3.59)

For any given t, when β is sufficiently large, Pr(|S̃t| ≤ β) ≈ 1, and

Pr
(
Jβ = t

)
≈ Pr{|S̃t−1| < β, |S̃t| ≥ β}. (3.60)
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Note that S̃t = γS̃t−1,

Pr
(
Jβ = t

)
≈ 2 Pr{ β

γt
≤ L0 <

β

γt−1
}

= 2
(

Φ
( β√1− γ−2

γt−1 · (σ/γ)

)
− Φ

(β√1− γ−2

γt · (σ/γ)

))
.

Note that we consider M is sufficiently large, then from Lemma 4, E[Jβ∗ ] is sufficiently large,

thus the optimal threshold β∗ and |SJβ∗ | are also large. To find the smallest index Jβ∗ such that

|SJβ∗ | ≥ β∗, it is approximately to have the following theorem.

Theorem 8. Given any 0 < γ < 1 and σ, an approximate of the optimal threshold, i.e., β∗, is the

solution of (3.61),

∞∑
t=1

2t
(

Φ
( β√1− γ−2

γt−1 · (σ/γ)

)
− Φ

(β√1− γ−2

γt · (σ/γ)

))
=

(
1 +

√
1− 4λm

M

)
M

2c(M)
+ 1. (3.61)

Remark 16. The approximation in (3.59) holds when t is sufficiently large, and the approximation

in (3.60) holds when β is sufficiently large. Thus, Theorem 8 is valid in a system with a huge number

of sensors in a long time horizon.

Proof. From (3.58), E[Jβ] ≈
∑∞

t=1 2t
(

Φ
( β√1−γ−2

γt−1·(σ/γ)

)
−Φ

(β√1−γ−2

γt·(σ/γ)

))
. Combine with (3.48), we have

the desired results.

Corollary 2. Given any 0 < γ < 1 and σ, an approximate of the optimal threshold, i.e., β∗, is the

solution of (3.62),
∞∑
t=1

2t
(

Φ
( β√1− γ−2

γt−1 · (σ/γ)

)
− Φ

(β√1− γ−2

γt · (σ/γ)

))

=

(
1 +

√
1− 4

eM

)
eM

2
+ 1.

(3.62)

Proof. From Appendix B.10, under an optimal β, Assumption 2 holds, so we have λm ≈ e−1,

c(M) ≈ e−1. Substituting λm ≈ e−1, c(M) ≈ e−1 to (3.61), we have the desired results.
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3.7. Unreliable Random Access Channels

Finally, we generalize our model to account for unreliability in random access channels, i.e., erasure

channels. Related works such as [199, 200] investigated Age of Information in unreliable channels,

while optimal power allocation strategies in unreliable channels with respect to remote estimation

have been considered in [201]. However, in this section, we aim to minimize NAEE defined in (3.2)

under oblivious and non-oblivious policies in unreliable channels.

In the model defined in Section 3.2, sensors can deliver packets successfully if no collisions happen.

Now, we assume that packets are erased with some probability even if no collisions happen in the

channel. In particular, suppose that if the channel is not in collision, the packet can be delivered

with probability 1 − ε, where ε is the channel erasure probability. We do not introduce another

feedback, i.e., we assume that only collision feedback (not the full feedback) can be transmitted

to sensors. Same as Section 3.2, (active) sensors transmit packets through the slotted ALOHA

algorithm (3.8). For clarity of exposition, we assume that packet erasure happens at the end of

every time slot (after channel collisions).

From Section 3.3, in the limit of M , the channel throughput/rate is around e−1 when ε = 0. Now,

note that the channel erasure probability is ε, which implies when no collisions occur, every packet

chosen by slotted ALOHA (3.8) is delivered with probability 1 − ε. Thus, the throughput/rate is

around e−1(1− ε). In this section, we let c(M) = e−1(1− ε). In the rest of the section, we find the

optimal threshold in two regimes: a) γ = 1, and b) γ 6= 1.

γ = 1 Similar to Section 3.4, we first consider oblivious schemes. By a proof similar to that of

Lemma 5, (3.18) and (3.19) still hold in our unreliable random access setting. Since the channel

throughput/rate is around e−1(1− ε), we use [37, Theorem 5] to obtain the following NAAoI:

lim
M→∞

JSATε (M) =
e

2(1− ε)
. (3.63)
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Note that (3.18) and (3.19) still hold in erasure channels. Thus, the normalized average estimation

error is computed by

lim
M→∞

LSATε (M) = lim
M→∞

LSATε (M)σ2 =
eσ2

2(1− ε)
. (3.64)

Now, we consider non-oblivious schemes. The analysis in Section 3.3 can be generalized to yield the

following theorem.

Theorem 9. Let M be sufficiently large. An optimal β∗ε is approximately given by

β∗ε ≈ σ
√
eM/(1− ε),

and

L̂EbTε =
e

6(1− ε)
σ2. (3.65)

Remark 17. The new threshold in Theorem 9 is larger than that in Theorem 6, i.e., β∗ε ≥ β∗

for 0 ≤ ε < 1. The expected number of newly active nodes is reduced. This is because (i) if a

packet is erased, then the corresponding sensor is still active in the next time slot; (ii) the channel

throughput/rate decreases to around e−1(1− ε), not e−1.

Remark 18. Comparing (3.64) and (3.65), we still have LSATε /L̂EbTε ≈ 3 in erasure channels.

Proof. The proof of Theorem 9 is similar to that of Theorem 6. The only difference is replacing

c(M) ≈ e−1 with c(M) ≈ e−1(1− ε).

γ 6= 1 To find the approximate optimal β∗ when γ 6= 1 on unreliable random access channels, one

can straighforwardly submit λm = e−1 and c(M) = e−1(1 − ε) to Theorem 7 (for the case when

0 < γ < 1) and Theorem 8 (for the case when γ > 1), respectively.
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3.8. Numerical Results

In this section, we verify our findings through simulations. The numerical results in the case when

γ = 1, when γ 6= 1, and the unreliable random access channels are given in In Section 3.8.1,

Section 3.8.2, and Section 3.8.3, respectively.

3.8.1. When γ = 1

Figure 3.2 compares the NAEE of our proposed policy with the state of the art for M = 500 under

different σ2. In this plot, the green (plus) curve corresponds to an optimal stationary randomized

policy in which each node transmits with an optimal pre-determined probability. The performance

of threshold policies like [33, 56] that impose an optimal (fixed) transmission rate for each sensor

also coincides with this curve, i.e., the green (plus) one. These policies do not exploit the available

feedback for decision-making. The purple (diamond) curve shows the performance of a standard

pseudo-Bayesian slotted ALOHA. Slotted ALOHA does use feedback, but treats all packets similarly,

independent of their corresponding sample values. The red (circle) and blue (squared) curves

correspond to oblivious (age-based) policies [37, Algorithm 1] and [37, Algorithm 2], respectively.

The black (star) curve shows the performance of our proposed decentralized policy in Algorithm 2

and the red (x) curve shows the approximation we find in (3.41). The gap between the two is small

but increases linearly in σ2 as discussed in Section 3.4.5. In this plot, we have also included an

oblivious and a non-oblivious centralized policy. The former (green dashed curve) schedules the

transmitter with the largest age Proposition 5 is optimal in the class of oblivious policies. The

centralized non-oblivious policy that we have considered here (yellow smooth curve) schedules the

transmitter with the largest estimation error. Both centralized oblivious and non-oblivious policies

are often observed to be numerically very close to the optimal.

The numerical calculation and analytical approximation of E[Jβ], E[
∑Jβ

j=1 S
2
j ] and E[Uβ] are given

in Figure 3.3a, Figure 3.3b and Figure 3.4a, respectively. Recall that E[J2
β ] is 10 times E

[∑Jβ
j=1 S

2
j

]
,

so we only consider one of them. In order to offset the effect introduced by the number of nodes, we

consider the normalized silence delay E[Jβ]/M , the normalized transmission delay E[Uβ]/M , and

E[
∑Jβ

j=1 S
2
j ]/M . The estimation error of the normalized silence delay E[Jβ]/M is invariant of σ2
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Figure 3.2: NAEE as a function of σ2 for various state-of-the-art schemes with M = 500.
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Figure 3.3: Simulated and analytical E[Jβ]/M and E[
∑Jβ

j=1 S
2
j ]/M .

(Figure 3.3a), while the estimation error of E[
∑Jβ

j=1 S
2
j ]/M increases linearly with σ2 (Figure 3.3b).

This coincides with the analysis in Section 3.4.5. In the simulation, we numerically find the expected

fraction of active nodes to be αβ = 0.0173. Substituting αβ = 0.0173 into (3.16), we get E[Uβ].

From Figure 3.4a, we can see that normalized transmission delay E[Uβ] coincides with analytical

results in (3.16).

Next, we show in Figure 3.4b that the gap between LEbT (M) and L̂EbT (M) decreases as M gets

large. In other words, the influence of approximation error caused by Langevin dynamics in Algo-
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Figure 3.4: Simulated and analytical E[Uβ]/M and LEbT (M)−L̂EbT (M)
σ2 .

rithm 2 weakens (but does not vanish) as M increases.

3.8.2. When γ 6= 1

In the region 0 < γ < 1, we set γ = 0.999, while in the region γ > 1, we set γ = 1.001. Note that

the closed from of β∗ can not be obtained from (3.52) or (3.62), so we provide the numerical results

for β∗ in Table 3.1 (γ = 0.999) and Table 3.2 (γ = 1.001).

In Table 3.1, the channel throughput is close to but still less than e−1. This is because we use two

approximations in (3.50) and (3.51) to find β∗. Although approximations are utilized, the simulated

E[Jβ] is close to the right-hand side of (3.52), so the approximations are accurate and the relative

error is less than 3%.

When 0 < γ < 1, the comparison of NAEE among different policies is given in Figure 3.5a. Our

proposed policy outperforms the decentralized state-of-the-art. These trends are similar to those in

Section 3.8.1. It is interesting to observe that the EbT policy (decentralized scheme) performs better

than the centralized oblivious MW policy. In this case, the AoI can not be a good representative of

error. From (3.9), the previous error is compacted by the constant γ every time slot, which implies

a large AoI may not result in a large error.

In Table 3.2, the channel throughput is less than e−1, and relative errors between the simulated
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E[Jβ] and the right-hand side of (3.52) are larger than those in the case 0 < γ < 1. As we mentioned

in Remark 16, this is because the approximation in (3.60) holds only when t is relatively large, and

it is not very accurate when t is small.

When γ > 1, from Figure 3.5b, our proposed policy outforms the decentralized state-of-the-art, i.e.,

SAT in [37]. In the figure, we do not plot the performance of the optimal stationary randomized

policy, because the NAEE is explosive when the time horizon is large (> 104). Opposite to the case

0 < γ < 1, the centralized oblivious MW policy performs better than the EbT policy. Note that

the error in (3.9) is expanded by the constant γ in every time slot, so a large AoI results in a large

error with a high probability.

At the end of the subsection, we investigate the impact of γ on the improvements of non-oblivious

policies over oblivious policies. Specifically, we consider LSAT (M)
LEbT (M)

as a function of γ. From Table 3.3,

we can see that LSAT (M)
LEbT (M)

increases with γ, which implies that the non-oblivious policies (EbT

policies) provide more benefits in terms of the NAEE comparing to oblivious policies (SAT policies)

when γ increases. Note that we consider LSAT (M)
LEbT (M)

instead of LSAT (M)

L̂EbT (M)
, then LSAT (M)

LEbT (M)
6= 3 when

γ = 1.

σ2 1 1.5 2 2.5 3 3.5 4 4.5 5

β∗ 30.9 37.9 43.8 48.9 53.6 57.9 61.9 65.7 69.2

throughput 0.349 0.347 0.347 0.346 0.345 0.345 0.350 0.347 0.350

simulated E[Jβ] 1386.0 1393.8 1394.9 1401.9 1404.4 1407.1 1384.2 1400.2 1383.1

error from (3.52) 1.9% 2.5% 2.6% 3.0% 3.2% 3.3% 1.8% 2.7% 1.7%

Table 3.1: Approximate optimal β∗, the channel throughput, and the simulated silent delay under
different σ2 when γ = 0.999.

σ2 1 1.5 2 2.5 3 3.5 4 4.5 5

β∗ 45.8 56.0 64.7 72.4 79.3 85.6 91.5 97.1 102.3

throughput 0.315 0.315 0.314 0.320 0.316 0.314 0.316 0.314 0.314

simulated E[Jβ] 1194.8 1190.2 1196.2 1199.5 1195.4 1188.8 1192.7 1193.6 1193.3

error from (3.52) 13.3% 13.9% 13.3% 13.1% 13.4% 14.0% 13.6% 13.6% 13.6%

Table 3.2: Approximate optimal β∗, the channel throughput, and the simulated silent delay under
different σ2 when γ = 1.001.
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γ 0.995 0.996 0.997 0.998 0.999 1 1.001 1.002

σ2 = 1 1.347 1.413 1.512 1.686 2.018 2.725 3.824 28.676

σ2 = 2 1.352 1.401 1.515 1.712 2.032 2.724 3.555 26.060

σ2 = 3 1.344 1.417 1.501 1.685 2.278 2.725 3.827 31.184

Table 3.3: LSAT (M)/LEbT (M) v.s. γ when M = 500.
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Figure 3.5: NAEE as a function of σ2 for various state-of-the-art schemes under different γ.

3.8.3. Unreliable Random Access Channels

In this section, we show the performances of different policies in unreliable random access channels

with erasure probability ε. Let σ2 = 3. Figures 3.6a - 3.6c compares the NAEE of our proposed

policy with the state of the art for M = 500 under different ε, γ. It is obvious to see that the EbT

policy outperforms all other decentralized transmission mechanisms. In different regimes of γ, the

NAEE increases with ε under any policy. This is because more packets are erased when the channel

erasure probability is larger, hence a larger estimation error occurs.

3.9. Conclusion and Future Research

We considered the problem of real-time sampling and timely estimation over wireless collision chan-

nels withM independent and statistically identical first-order autoregressive processes (sources). We

studied a normalized metric of estimation error which we termed the normalized average estimation

error (NAEE), and focused on the regime of large M . We proposed two general classes of policies:
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Figure 3.6: NAEE as a function of ε for various state-of-the-art schemes in reliable and unreliable
channels under different γ.

oblivious policies and non-oblivious policies. When the Gauss-Markov processes are reduced to

random walk processes, we showed that, in the former class of policies, minimizing the expected

estimation error is equivalent to minimizing the expected age and consequently provided lower and

upper bounds on the optimal estimation error. We then proposed and analyzed a (non-oblivious)

threshold policy in which (1) nodes become active if their estimation error has crossed a threshold

and (2) active nodes transmit stochastically with probabilities that adapt to the state of the channel

(exploiting the collision feedback). Subsequently, we showed that the NAEE performance of obliv-

ious (age-based) policies is at least twice better than the state-of-the-art schemes (which impose a

fixed rate of transmission at the nodes) such as standard slotted ALOHA and optimal stationary

randomized policy. Moreover, our proposed threshold policy offers a multiplicative gain of close to

3 compared to oblivious policies. When the processes are stationary or explosive, numerical opti-

mal thresholds are obtained and the optimal threshold policies outperform all other decentralized

schemes. In particular, when the processes are stationary, the optimal threshold policies outper-

form the centralized oblivious age-based ones. We observe numerically that the multiplicative gain

offered by our proposed threshold policy increases with γ.

Then, we extended our framework to incorporate unreliable random access channels with erasure

probability ε. The NAEE increases with ε no matter whether the processes are stationary, random
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walk, or explosive. Specifically, under random walk processes, numerical results show that the

multiplicative gain is 3 and independent of ε (which is consistent with Remark 18). Our findings

suggest that designing optimal multiple access systems for future IoT and CPS applications requires

going beyond traditional metrics of rate, reliability, latency, and age.

Future research includes generalizations to accommodate the following scenarios: 1) dynamic net-

works, i.e., the number of sensors changes with time; 2) asymmetric networks, i.e., the sensors are

no longer statistically identical; 3) adaptive error-based thinning policies, i.e., the threshold β(k)

changes with time k; 4) correlated sources, i.e., sensors are no longer mutually independent. For the

first scenario, we can simply replaceM withM(k) in every time slot. Subsequently, the error-based

threshold is also a time-variant variable, β(k). For the remaining three scenarios, the method we

have proposed can not be applied directly. In particular, in the second scenario, we used the profile

of all the sources to find an estimate on an individual source. This step fails in asymmetric settings.

In the third scenario, the nodes need statistical inference about the distribution of error process

{ψi(k)}i to decide which ones are of priority. In the fourth scenario, the policies should change to

account for the correlation between the observations.
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CHAPTER 4

Decentralized Machenisms in Ad-hoc Networks

In this chapter, we extend the problem of real-time sampling and estimation in random access

channels to ad-hoc networks. There are M sources, and each source observes a physical process

and is able to sample and communicate with other agents for timely estimation. We seek to de-

sign near-optimal decentralized sampling and communication strategies. Towards understanding the

problem of real-time sampling and estimation under decentralized strategies, recent works have pro-

posed decentralized multiple access schemes to minimize the AoI and estimation error [34, 37, 57].

Nonetheless, in these works, due to the essence of random access channels, sources do not communi-

cate with each other but only communicate with the receiver. Network topologies indeed affect the

transmission policies in ad-hoc networks. For example, consider a source with a large degree, i.e.,

it has a lot of neighboring sources. The transmission policy for this source is different from others

even if all the sources are identical. This is because collisions with respect to it happen with high

probability, which results in failure of receiving fresh/useful information from other sources. It has

remained open to how such designs can inform near-optimal designs in the setting where network

topology may affect the transmission policies.

4.1. Literature Review

Multi-agent reinforcement learning: The analytical solutions are not tractable when network

topologies are incorporated. Thus, we use techniques from learning fields. Multi-agent reinforce-

ment learning (MARL) algorithms have shown success in many applications, which use reinforce-

ment learning (RL) techniques to co-train a set of agents in a multi-agent system [58]. MARL

algorithms are utilized to train a set of agents simultaneously to achieve cooperative or uncoopera-

tive goals. A plethora of new MARL algorithms integrating deep learning techniques have appeared

in recent years [58, 59, 60]. Generally speaking, MARL algorithms can be divided into three classes

[58], (i) independent learning, each agent is trained by RL algorithms without consideration of the

multi-agent structure [61]; (ii) centralized multi-agent policy gradient [62, 63]; (iii) value decom-
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position algorithms [64, 65]. The last two follow the Centralised Training Decentralised Execution

(CTDE) paradigm. MARL has recently witnessed successfully solving sequential decision-making

problems in many wireless applications [66], such as link scheduling [67], user scheduling [68], re-

source management [69], power allocation [70], edge computing [71], fault-tolerant tracking control

[72], anti-jamming [73], edge caching [74], and cellular offloading [75]. To our best knowledge, there

is only one (weakly) related paper [76], which provided a modification of the Trust Region Pol-

icy Optimization (TRPO) algorithm, and frame problems as event-driven decision processes where

agents make decisions asynchronously. However, in our setting, agents make decisions to transmit

packets or not in every time slot, and the policies are not event-driven decision processes.

Graph Recurrent Neural Networks: Another difficulty that arises due to network topology

is the input permutations. For example, consider two homogeneous agents and their actions and

observations are A and B, respectively. Then, both AB and BA are valid and equivalent environ-

ments. Using a permuted input in classical deep nets will result in a different output [77]. To avoid

this practical issue, we apply graph neural networks (GNNs) [78, 79, 80, 81], which have the permu-

tation invariance property, rather than standard neural networks in MARL techniques. GNNs are

a popular information processing architecture in graph signal processing [82, 83, 84, 85, 86], due to

their great properties, i.e., invariance and stability, inheriting from graph convolutions [79]. Graph

processes fundamentally contain a dimension of time, and recurrent neural networks (RNNs) can

be utilized to describe the time dependencies in graph processes. The utilization of RNNs is a good

choice when the data elements are Euclidean and time-dependent [87, 88, 89]. Some implementa-

tions of a graph recurrent architecture can be found in [90, 91, 92, 93]. In [81], GRNNs have been

systematically proved to be permutation equivariant and they are stable to perturbations of the

underlying graph support, and simulations have shown that GRNNs outperform GNNs and RNNs,

which implies that it is essential to take both temporal and graph structures of a graph process into

account for decision-making.

4.2. System Model

Consider a connected undirected graph withM statistically identical agents. Let the graph be time-

invariant and time be slotted. We denote the graph as GM = (VM , EM ), where VM = {1, 2, · · · ,M}
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denotes the set of sources and EM ⊂ VM × VM denotes the set of edges among sources. The ith

source and the jth source are conntected with each other by an edge if (i, j) ∈ EM . Denote ∂i as

the neighbors of the ith source, i.e., ∂i = {j|(i, j) ∈ EM}. Every source i, i = 1, 2, · · · ,M , observes

a physical process {Xi(k)}k≥0,

Xi(k + 1) = Xi(k) + Λi(k), (4.1)

where Λi(k) ∼ N (0, σ2) are i.i.d for all i, k. The processes {Xi(k)}∞k=0 are assumed to be mutually

independent across i. By convention, Xi(0) = 0 for all i ∈ VM .

All sources can communicate with their neighbors, and each source communicates with at most one

of its neighbors in a time slot. Specifically, the ith source can transmit an update status (packet) to

the jth source in a time slot if (i, j) ∈ EM . If there is no edge between the ith and the jth sources,

then they can not communicate with each other directly. The communication medium is modeled

by a collision channel: if two or more sources in proximity transmit packets in the same time slot,

then the packets interfere with each other (collide) and cause communication failures. We assume

a delay of one-time units in delivery for packets. Let cji (k) = 1 represent the event that collisions

happen in the edge with the direction from the ith source to the jth source, otherwise cji (k) = 0.

Each source can cache packets from others. For clear presentation, each source is assumed to have

M virtual queues11, and the queue with index j ∈ VM , denoted by Qi,j , is utilized to cache the

packets from the jth source. We further assume that the buffer size of Qi,j is one and that a coming

packet can either replace undelivered packets or be discarded. This assumption relies on the fact

that the underlying processes that are monitored are Markovian. The indicator qji (k) = 1 implies

that Qi,j is occupied by a packet in time k otherwise qji (k) = 0. In every time slot, every source

can sample the underlying process (packets in Qi,i) or transmit packets in {Qi,j}{j 6=i} to one of its

neighbors. Denote dj,`i (k) = 1 as the indicator such that the ith source transmits a update status

from the `th source (in Qi,`) to the jth source successfully in time k, otherwise dj,`i (k) = 0. Note

that dj,`i (k) = 0 for all k, ` if j /∈ ∂i.
11Since the graph is connected, then every source can receive packets from every other source.
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Now, we summarize the process of transmission: (i) At every time slot k, the ith source observes the

physical process Xi(k) defined in (4.1) and updates the packet in Qi,i. (ii) The ith source chooses to

transmit a packet or keep silent in the current time slot. (iii) If the ith source chooses to transmit a

packet, then he picks up a specific packet from {Qi,j}j∈VM and transmits it to a specific neighbor.

If the ith source chooses to keep silent, then he will not transmit packets in this time slot. (iv) Once

all sources determine their actions, the transmissions start. (v) Suppose that the receiver of the

ith source is the jth source, and the transmitted packet is chosen from Qi,`. If cji (k) = 1, then the

packet can not be delivered to the jth agent, otherwise the packet is delivered to the jth source. (vi)

Finally, if Qj,` is empty, then the jth source will cache the transmitted packet; if Qj,` is non-empty,

but the current packet in Qj,` is older (we will define “old” and “new” later) than the transmitted

one, then the jth source will replace the current packet with the transmitted one; otherwise, the

transmitted packet (from Qi,`) will be discarded.

Every source is assumed to estimate the process for every other source based on the collection of

received samples. Denote by X̂j
i (k) the estimate of Xj(k) in time slot k from the perspective of the

ith source. In particular, X̂i
i (k) = Xi

i (k) for all i and k. By convention, X̂j
i,0 = 0 for all i, j ∈ VM .

We define the average sum of estimation errors (ASEE) as our performance metric:

Lπ(M) = lim
K→∞

E[LπK ]

LπK(M) =
1

M2K

K∑
k=1

M∑
i=1

M∑
j=1

(
X̂j
i (k)−Xj(k)

)2
,

(4.2)

where π ∈ Π refers to a decentralized sampling and transmission policy in place, and Π is the

set of all decentralized sampling and transmission policies. Thus, we need to solve the following

optimization problem

min
π∈Π

Lπ(M). (4.3)

Let us provide a more precise definition of the policy appearing in (4.2) and (4.3) in the following

definition.

Definition 8. A decentralized sampling and transmission policy is the collection of µi(k), νi(k) for
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all i ∈ VM and k ≥ 0, i.e.,
{
{
(
µi(k), νi(k)

)
}i∈VM

}
k≥0

, such that:

• If µi(k) 6= i, then the ith agent transmits the packet in Qi,νi(k) to the agent µi(k) in time slot

k. It is implicity to assume that µi(k) ∈ ∂i.

• If µi(k) = i, then the ith agent keeps silent in time k, and we artificially set νi(k) = i.

The minimum attainable ASEE is then denoted by L(M): L(M) = minπ∈Π L
π(M). Our objective is

to design decentralized sampling and transmission mechanisms to attain L(M). Every time k, every

source chooses its action in a decentralized manner based on its current and past local observations,

as well as its past actions. In this paper, we consider two general classes of policies are considered,

namely oblivious policies and non-oblivious policies (as we defined in Chapter 3). In the former

class, decision-making is independent of the processes that are monitored, while in the latter class,

decision-making depends on the processes.

4.2.1. Age of Information and Oblivious Policies

Let τi,j be the generation time of the packet in Qi,j . Note that the buffer size of Qi,j is 1, so the

current packet is the latest one. The age of information (AoI) with respect to Qi,j , denoted by

hji (k), is defined as

hji (k) = k − τi,j . (4.4)

Without loss of generality, let hji (0) = 0. Let another packet associated with the jth source is

delivered to the ith source and it may be cached in Qi,j . Suppose that the delivered packet has

generation time τ ′ and τ ′ < τi,j , i.e., the delivered packet is generated before the current packet in

Qi,j . If the packet is cached by the ith source, then the AoI of Qi,j becomes k− τ ′ > k− τi,j , which

implies that the delivered packet can not decrease the AoI of Qi,j . In this case, we say the delivered

packet is older than the current packet in Qi,j , and the ith source must discard the delivered (older)

packet. From the discussions above, based on (4.4), hji (k) increases with time k, and it jumps to a
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Figure 4.1: An example of trajectory of hji (k).

certain value when a newer packet is delivered. Then, the recursions of hji (k) is (see Figure 4.1),

hji (k + 1) =


hju(k) + 1 di,ju (k) = 1, hju(k) < hji (k)

hji (k) + 1 otherwise.
(4.5)

At the beginning of time slot k, the ith source knows the information of the packet cached in Qi,j

before and including time k, i.e., Xj(τi,j), and reconstructs X̂j
i (k) by the minimum mean square

error (MMSE) estimator. Since we assume that the buffer size of every agent is 1, the MMSE

estimator reduces to a Kalman-like estimator:

X̂j
i (k) =E

[
Xj(k)|Xj(τi,j)

]
. (4.6)

In particular, from (4.1) and (4.4), we have

Xj(k) = Xj(τi,j) +

hji (k)∑
τ=1

Λi(k − τ). (4.7)

Note that E[Λi(k)] = 0 for all i, k, then, Kalman-like estimator in (4.6) is:

X̂j
i (k) = E

[
Xj(k)|Xj(τi,j)

]
= Xj(τi,j). (4.8)
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Based on (4.8), the recursion of estimates are

X̂j
i (k + 1) =


X̂j
u(k) di,ju (k) = 1, hju(k) < hji (k)

X̂j
i (k) otherwise.

(4.9)

Recall that our goal is to find an optimal decentralized sampling and transmission policy solving

the optimization (4.3). One of the major challenges in this problem arises from the decentralized

nature of decision-making. A decentralized policy is one in which the action of each source is only a

function of its local observations and actions. In this setup, the action of source i at time k depends

on the history of feedback and actions as well as casual observations of the process {X̂j
i,k}j∈VM .

To simplify the problem, we first consider oblivious policies. We define the oblivious policies as the

policies where the actions of each source depend only on the history of feedback and actions at

that node. In other words, oblivious policies do not take into account the realization (value) of the

samples, but only the time they were sampled, transmitted, and received (if successfully received).

Note that oblivious policies are independent of the processes they observe and they are therefore

less costly to implement. In the rest of the subsection, we show that minimizing ASEE in the class

of oblivious policies is equivalent to minimizing the average sum of AoI.

Lemma 8. In oblivious policies, the expected estimation error associated with process i has the

following relationship with the expected age function:

E[
(
Xj(k)− X̂j

i (k)
)2

] = E[hji (k)]σ2. (4.10)

Proof. At the beginning of time slot k, the estimation error is

Xj(k)− X̂j
i (k) = Xj(k)−Xj(τi,j) =

hji (k)∑
τ=1

Λi(k − τ).

Now note that hji (k) is independent of {Λi(k)}i,k under oblivious policies. Therefore, using Wald’s
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equality, we find

E[Xj(k)− X̂j
i (k)] = 0

E[
(
Xj(k)− X̂j

i (k)
)2

] = E[hji (k)]σ2.

From Lemma 8, in the class of oblivious policies, minimizing the ASEE defined in (4.2) is equivalent

to minimizing the normalized average sum of AoI defined in (4.11),

Jπ(M) = lim
K→∞

E[JπK ]

JπK(M) =
1

M2K

K∑
k=1

M∑
i=1

M∑
j=1

hji (k).
(4.11)

Thus, in the class of oblivious policies, the optimization problem (4.3) is equivalent to

min
π∈Π′

Jπ(M), (4.12)

where Π′ is a set of all possible oblivious policies. In the rest of the paper, we will propose a unified

solution for both (4.2) and (4.12).

4.3. Preliminaries

4.3.1. Dec-POMDP

We give the definition of a Decentralized Partially Observable Markov Decision Process (Dec-

POMDP) [66]. A Dec-POMDP is a combination of a regular Markov Decision Process to model

system dynamics with a hidden Markov model that connects unobservable system states probabilis-

tically to observations.

Definition 9. A Dec-POMDP can be described by a tuple of key elements

(M,S, {Ai}, Ps, R, {Oi}i, Po, γ),
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such that

• M : the number of agents.

• S: the set of environmental states which are shared by all agents.

• Ai: the action spaces of the ith agent.

• Ps: S×
∏
i∈VM Ai → [0, 1] denote the transition probability from a state s ∈ S to a state s′ ∈ S

after executing a (joint) action.

• R: S ×
∏
i∈VM Ai × S → R is a global reward function shared by all.

• Oi: the observation spaces of the ith agent.

• Po: S×
∏
i∈VM Ai×

∏
i∈VM Oi → [0, 1] is the observation function which provides the probability

of a joint observation after a joint action and transiting to a new state.

• γ: the discount factor that represents the value of time, γ ∈ [0, 1].

In time slot k, the environment s(k) ∈ S is unknown to all agents. However, at the current state

s(k), the ith agent receives its observations oi ∈ Oi without knowing the other agents’ observations.

Every agent takes action ai(k) ∈ Ai
(
resulting in a joint action a(k) ∈

∏
i∈VM Ai and a(k) =

a1(k)× a2(k)× aM (k)
)
, which causes the environment to transition to a new state s′(k) ∈ S with

transition probability Ps
(
s′(k)|s(k), a(k)

)
. Finally, every agent receives a reward r ∈ R. Here, we

assume that all agents share the same reward. This is because all agents are homogeneous. This is

because all agents are homogeneous.

4.3.2. Permutation Invariance

Once sources are located in a wireless network, there exists an inherent network topology among

them. In this sense, the order of collecting observations and actions may significantly affect the

transmission policies if we utilize a deep net critic which depends on all observations and actions. In

other words, consider a deep net critic, a permuted input changes the output despite the environment

86



remaining identical.

To avoid the dilemma, [77] proposed a permutation invariant critic (PIC). Let all agents share

a centralized critic [62, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211]. Denote x(k) as the

concatenation of {oi(k)}i∈VM , and denote A(k) as the concatenation of {ai(k)}i∈VM . The PIC has

the following permutation invariance, i.e.,

PIC(Ux(k), UA(k)|θPIC) = PIC(U ′x(k), U ′A(k)|θPIC), (4.13)

where U and U ′ are any permutation matrices. To achieve (4.13), [77] proposed to use graph

convolutional neural nets.

4.3.3. Graph Recurrent Neural Networks (GRNNs)

A recurrent neural network (RNN) can be defined as the following architecture [212],

z(t) = ρ1

(
Bx(t) + Cz(t− 1)

)
, 1 ≤ t ≤ T, (4.14)

ŷ = ρ2

(
Dz(T )

)
. (4.15)

In (4.14), {x(t)}1≤t≤T with x(t) ∈ RM is a sequence of M -dimensional data points, z(t) ∈ RM

is the hidden state extracted from the sequence {x(τ)}1≤τ≤t, B ∈ RM×M , C ∈ RM×M are linear

operators, ρ1 is a pointwise nonlinearity. Note that it is not necessary for x(t) and z(t) to share the

same dimensions. In (4.15), ŷ ∈ RM ′ is an estimate of y ∈ RM ′ , which is the target representation of

{x(t)}1≤t≤T , D ∈ RM×M ′ is the linear output map and ρ2 is another pointwise nonlinearity. Given

a training set {{x(t)}1≤t≤T , y}, the optimal linear maps B, C and D are obtained by minimizing

some loss function L(ρ(Dz(T )), y) over the training set.

Now, we extend x to a graph signal and let Ξ be a graph shit operator (GSO) [81]. Then, we define

graph convolutions [78, 80, 81] as,

B(Ξ)x =

K−1∑
k=0

bkΞ
kx, (4.16)
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where Ξkx = Ξ(Ξk−1x) and bk ∈ R for all 0 ≤ k ≤ K− 1. In (4.16), Ξkx represents the information

contained in the k-hop neighborhood of each node. For 0 ≤ k ≤ K − 1, [b0, b1, · · · , bK−1] is called

filter taps. Then, combining (4.14), (4.15), and (4.16), the graph recurrent neural network (GRNN)

architecture with {x(t)}1≤t≤T is defined as

z(t) = ρ1

(
B(Ξ)x(t) + C(Ξ)z(t− 1)

)
, (4.17)

ŷ = ρ2

(
D(Ξ)z(T )

)
, (4.18)

where x(t) and z(t) in (4.17) and (4.18) are graph signals.

Suppose that each node has a vector of features. All feature vectors constitute a graph signal tensor,

denoted by V ∈ RM×F , where M is the number of nodes and F is the dimension of feature vectors.

Each column Vf ∈ RM is a graph signal corresponding to the values of feature f in all nodes. The

linear transformation in (4.16) can be extended to an operator, denoted by B(Ξ),

B(Ξ)V =

K−1∑
τ=0

ΞτV Bτ , (4.19)

where Bτ ∈ RF×G with τ = 0, 1, 2, · · · ,K − 1 are the filter taps, and G is the dimension of the

output features.

Finally, denote the hidden state Z(t) has the dimensionM×H. Consider the graph signal sequences

{X(t)}0≤t≤T , then (4.17) and (4.18) can be extended to

Z(t) = ρ1(B
(
Ξ)X(t) + C(Ξ)Z(t− 1)

)
, (4.20)

Ŷ = ρ2

(
D(Ξ)Z(T )

)
, (4.21)

where the filter taps are Bτ ∈ RF×H , Cτ ∈ RH×H , and Dτ ∈ RG×H , τ = 0, 1, 2, · · · ,K − 1. To

compact (4.20) and (4.21), we write

Ŷ = Φ(B, C,D; Ξ, {X(t)}Tt=1). (4.22)
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If X(t) = X for all 1 ≤ t ≤ T , (4.23) reduces to

Ŷ = Φ(B, C,D; Ξ, X, T ). (4.23)

4.3.4. Graphons

The descriptions of graphons are selected from [213]. A graphons is the limit of sequences of dense

undirected graphs, which is defined as W : [0, 1]2 → [0, 1], where W is bounded, measurable and

symmetric. The graphon signal is defined as a function X ∈ L2([0, 1]). On one hand, an important

interpretation of graphons (W ) and graphon signals (X) are generative models for graphs and graph

signals. A pair (Ξn, xn) can be obtained from the pair (W,X) as follows: A point ui ∈ [0, 1] is chosen

to be the label of the ith node with i ∈ Vn. For 1 ≤ i, j ≤ n,

[Ξn]ij = Bernoulli(W (ui, uj)) (4.24)

[xn]i = X(ui). (4.25)

For example, the stochastic graphs can be constructed by the following rule: Let {ui}ni=1 be n points

sampled independently and uniformly at random from [0, 1], and the n-node stochastic graph Gn,

whose GSO Ξn, is obtained from W by (4.24). On the other hand, graphons and graphon signals

can be induced by graphs and graph signals, respectively. Let Gn be a graph with GSO Ξn and have

node labels {ui}ni=1, ui ∈ [0, 1], and xn is a graph signal. Denote Ii = [ui, ui+1) for 1 ≤ i ≤ n − 1

and In = [un, 1] ∪ [0, u1). Then (WΞn , Xn) induced by (Ξn, xn) is given by

WΞn(u, v) =

n∑
i=1

n∑
j=1

[Ξn]ij1u∈Ii1v∈Ij (4.26)

Xn(u) =

n∑
i=1

[xn]i1u∈Ii . (4.27)

The diffusion operator for graphon signals, denoted by TW , is defined as

(TWX)(v) =

∫ 1

0
W (u, v)X(u)du.
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A graphon filter is an operator TB,W : L2([0, 1])→ L2([0, 1]), and is defined as follows,

(TB,WX)(v) = (

K−1∑
k=0

bkT
(k)
W X)(v)

(T
(k)
W X)(v) =

∫ 1

0
W (u, v)(T

(k−1)
W X)(u)du,

(4.28)

where T (0)
W = I and [b0, b1, · · · , bK−1] are the filter coefficients.

Similar to a GNN, a graphon neural network (WNN) is given as follows. The layer ` maps the

incoming F`−1 features from layer ` − 1 into F` features. Denote the features in layer ` − 1 as

Xg
`−1

12, 1 ≤ g ≤ F`−1. Denote the features in layer ` as Xf
` with 1 ≤ f ≤ F`. Then Xf

` =

ρ
(∑F`−1

g=1 T
Bfg` ,W

Xg
`−1

)
, where ρ(·) is a pointwise nonlinearity and {Bfg

` }`,f,g , B is a tensor grouping

the coefficient sets Bfg
` for all features and all layers with Bfg

` = [bfg`,0, b
fg
`,1, · · · , b

fg
`,K−1]. We abuse the

notation X a little such that X = {Xg
0}

F0
g=1, and denote Y = {Xf

L}
FL
f=1. A WNN can be represented

more compactly as the map

Y = TB,WX. (4.29)

4.3.5. Reinforcement Learning Algorithms

We introduce some commonly used reinforcement learning algorithms which will be used in Sec-

tion 4.6, i.e., Independent Synchronous Advantage Actor-Critic (IA2C), Independent Proximal Pol-

icy Optimization (IPPO), Multi-Agent Advantage Actor-Critic (MAA2C), and Multi-Agent Prox-

imal Policy Optimization (MAPPO) [58]. All these algorithms are variants of the commonly used

A2C algorithm [214, 215].

The IA2C and IPPO are independent learning where each agent has an actor and a critic trained, in

a decentralized manner, conditioned on the history of location observations, actions, and rewards,

to minimize the loss function. Different from the IA2C and IPPO, in the MAA2C and MAPPO,

the critic learns a joint state value function. It extends the existing on-policy actor-critic algorithm
12All features are graphon signals.
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A2C by applying centralized critics conditioned on the state of the environment rather than the

individual history of observations.

4.4. Graphical Reinforcement Learning Framework

Although every source decides, in a decentralized manner, when to sample, who to communicate

with, and what to transmit, all sources minimize the ASEE
(
see (4.2)

)
in a cooperative setting.

Denote the adjacent matrix of GM as ΞM . In each time slot k, the environment has a state sk,

including {Xi(k)}i∈VM , {X̂i
j(k)}i,j∈VM , {hij(k)}i,j∈VM , {cji (k)}i,j∈VM , {qji (k)}i,j∈VM , {dj,`i (k)}i,j,`∈M,

and ΞM in time slot k, i.e.,

s(k) =
{
{Xi(k)}i∈VM , {X̂

j
i (k)}i,j∈VM , {h

j
i (k)}i,j∈VM ,

{cji (k)}i,j∈VM , {q
j
i (k)}i,j∈VM , {d

j,`
i (k)}i,j,`∈VM ,ΞM

}
.

(4.30)

Each source can only observe its observations, so the observation of the ith source is

oi(k) =
{
Xi(k), {X̂j

i (k)}j∈VM , {h
j
i (k)}j∈VM ,

{cji (k)}j∈VM , {q
j
i (k)}j∈VM , {d

j,`
i (k)}j,`∈VM ,ΞM

} (4.31)

in time slot k. Here we assume that the network topology or adjacent matrix ΞM is known by all

sources. After receiving the observations, the ith source makes a decision ai(k) = (µi(k), νi(k)).

The joint actions a(k) = {ai(k)}i∈VM and the state s(k) makes the environment transition into the

next state s(k + 1) ∼ Ps
(
· |s(k), a(k)

)
.

Denote the policy neural network for the ith source as π(ai(k)|oi(k); θi). Since all sources are

identical and homogeneous, then π(ai(k)|oi(k); θi) is reduced to π(ai(k)|oi(k); θ), where θ1 = θ2 =

· · · = θM = θ. To find the optimal transmission policy in (4.2), we consider two commonly used

frameworks, i.e., the A2C and PPO frameworks. We abuse the notation such that a(k) and o(k)

represent the concatenations of {ai(k)}i∈M and {oi(k)}i∈M, respectively. Under the A2C framework
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[216, 214], we need to maximize

LA2C(θ) = E
[

log π(a(k)|o(k); θ)Adv(k)
]

where Adv(k) is an estimator of the advantage function in time slot k. Under the PPO framework,

we need to maximize [216]

LPPO(θ) = E
[

min
(
ζ(θ)Adv(k), clip(ζ(θ), 1− ε, 1 + ε)Adv(k)

)]
,

where ζ(θ) = π(a(k)|o(k);θ)
π(a(k)|o(k);θold) . The PPO framework is a straightforward extension of the A2C frame-

work.

4.4.1. Reward Function

At the end of every time slot, the environment returns a reward r(k). We define the shared reward

as

r(k) = −
∑

i,j∈VM
(
Xj(k)− X̂j

i (k)
)2

M2K
. (4.32)

If we focus on the age minimization problem (4.12), then the reward can also be defined as r(k) =

−
∑
i,j∈VM

hji (k)

M2K
. The return

∑∞
τ=0 γ

τr(k+ τ) is the total accumulated return from time step k with

discount factor γ.

4.4.2. Graph Actor

As mentioned in Section 4.3.2, there exists an inherent network topology among sources. By taking

a graph perspective of the data, we structure it in a useful way for learning. Recall that we consider

decentralized strategies, then every source has a graph with its observations for decision-making.

To avoid the impact of permutations of inputs, we consider graph convolution neural net. To fully

utilize the information in the graph, we use L graph recurrent neural net layers (as we defined in

Section 4.3.3). The actor is constructed by a GRNN. In time slot k, denote the graph associated with

the ith source as Gi(k). Note that it is assumed that the network topology is known for all sources.

Then, Gi(k) has the same node set and edge set as G. For every node in Gi(k), we embed a node
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feature. Define the node feature of the jth node in Gi(k) as vji (k), and the collection of node features

in Gi(k) is vi(k) = {vji (k)}j∈VM . Denote the dimension of node features as F0. Then, we convert

the collection of node features vi(k) to a graph signal tensor, denoted by Vi,0 and Vi,0 ∈ RM×F0 .

Consider the `th layer, 1 ≤ ` ≤ L. The input is the output from the (`−1)th layer, Vi,`−1 ∈ RM×F`−1 ,

and the output is Vi,` ∈ RM×F` . Similar to (4.23),

Vi,` = Φ(B`, C`,D`; ΞM , Vi,`−1, T ), (4.33)

where T is the number of recurrent rounds.

4.4.3. Action Distribution

Denote the output of the actor as Vi,L ∈ RM×FL . Note that Vi,L is node embeddings. Then,

we introduce another operator φ to convert node embeddings to an action distribution, i.e., φ :

RM×FL → RM×M , with the following specific form,

φ(Vi,L) :, Vi,L∆V ′i,L, (4.34)

where ∆ ∈ RFL×FL . ai,k is sampled by,

ai,k ∼ Fsoftmax
(
φ(Vi,L)

)
. (4.35)

Remark 19. Under the specific form (4.34), the number of parameters in φ is independent of the

number of agents M .

Remark 20. Note that all agents are homogeneous, so they share a common φ.

4.4.4. Graph Critic

The construction of the graph critic is similar to that of the graph actor in Section 4.4.2. However,

to reduce the complexity of our model, we remove the recurrent graph convolutional layers in the

graph critic. In other words, the graph critic is a classical GNN.
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4.5. Transferability of Action Distributions

Now, we provide a fundamental analysis of the graphical reinforcement learning framework in Sec-

tion 4.4. We start with the permutation invariance property. Note that GNNs have the permutation

invariance property, and a GRNN is a straightforward extension of a GNN combined with an RNN

architecture, so GRNNs have the permutation invariance property.

Lemma 9. ([213, Proposition 1]) Let Ξn be a GSO and Ξ̃n = UTΞnU be a permutation of this

GSO, for some permutation U . Let xt be a graph signal and x̃t = UTxt be the permuted version of

xt for all 1 ≤ t ≤ T . Then, it holds that

z̃t =ρ1(A(Ξ̃)x̃t +B(Ξ̃)z̃t−1) = UT zt, 1 ≤ t ≤ T,

ỹT =ρ2(C(Ξ̃)z̃T ) = UT yT .

In practice, it is impossible to learn GNNs for large networks. This is because (i) full knowledge

of the graph should be known, which is hard to collect when a network’s size is large, and (ii)

the matrix multiplication operations are computationally complex when the network size is large.

Fortunately, the filter taps in a GNN are independent of the network size. In other words, we can

transfer the model trained on small or moderate graphs to large graphs [213]. Note that a GRNN

is an extension of a GNN, so the transferability should hold in GRNNs. Suppose that yn1 and yn2

are outputs from a GNN or a GRNN with network size n1 and n2, respectively. The transferability

means that the distortion between yn1 and yn2 are small when n1 and n2 are large. Since yn1 and

yn2 have different dimensions, it is difficult to compare them directly, a tractable way is to compare

yn1 or yn2 with their limit. Before delving into transferability, we first give some useful definitions

and assumptions.

Definition 10. Let W be a graphon and X be a graphon signal. Let TB,W be a graphon filter
(
see

(4.28)
)
, and Y = TB,WX. Let Gn be n-node generic graph with node labels {ui}ni=1. Suppose that

(Ξn, xn) is induced from (W,X)
(
see (4.24) and (4.25)

)
, and (WΞn , Xn) is induced by (Ξn, xn)

(
see

(4.26) and (4.27)
)
. We call that
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(i) B(Ξn) is a graph filter (see (4.16)) instantiated from TB,W on this graph.

(ii) Yn = TB,WΞn
Xn is induced by yn = B(Ξn)xn.

(iii) Yn = TB2,WΞn
ρ(TB1,WΞn

Xn) is induced by yn = B2(Ξn)ρ
(
B1(Ξn)xn

)
, where ρ is a point-

wise nonlinearity, and TB1,W and TB2,W are graphon filters.

(iv) Yn = TBm,Wρm−1

(
TBm−1,W · · · ρ1(TB1,WX) · · ·

)
is induced by the graph signal yn =

Bm(Ξn)ρm−1

(
Bm−1(Ξn) · · · ρ1

(
B1(Ξn)xn

)
· · ·
)
, where ρ1, · · · , ρm−1 are pointwise nonlinear-

ities, and TB1,W , TB2,W , · · · , TBm,W are graphon filters.

Definition 11. Let TB,W be a WNN with L layers
(
see (4.29)

)
, F0 = 1 input feature, FL = 1 output

feature, and F` = F features per layer for 1 ≤ ` ≤ L − 1. Let Gn, {ui}ni=1, Ξn, WΞn, X, xn, and

Xn be defined in Definition 10. We call that

(i) B(Ξn) is a linear transformation (see (4.19)) instantiated from TB,W on this graph.

(ii) Yn = TB,WΞn
Xn is induced by yn = B(Ξn)xn.

(iii) Yn = TB2,WΞn
ρ(TB1,WΞn

Xn) is induced by yn = B2(Ξn)ρ
(
B1(Ξn)xn

)
, where ρ is a point-

wise nonlinearity, and TB1,W and TB2,W are WNNs.

(iv) Yn = TBm,Wρm−1

(
TBm−1,W · · · ρ1(TB1,WX) · · ·

)
is induced by the graph signal

yn = Bm(Ξn)ρm−1

(
Bm−1(Ξn) · · · ρ1

(
B1(Ξn)xn

)
· · ·
)
,

where ρ1, ρ2, · · · , ρm−1 are pointwise nonlinearities, and TB1,W , TB2,W , · · · , TBm,W are WNNs.

Definition 12. Similar to (4.20), (4.21), we can define a graphon recurrent neural network (WRNN)

as follows,

Zt = ρ1

(
TB1,WXt + TB2,WZt−1

)
, 1 ≤ t ≤ T, (4.36)

Y = ρ2

(
TB3,WZT

)
, (4.37)
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or write (4.36) and (4.37) compactly,

Y = Ψ(B1,B2,B3;W, {Xt}Tt=1), (4.38)

or

Y = Ψ(B1,B2,B3;W,X, T ), (4.39)

if Xt = X for all 1 ≤ t ≤ T . Let Gn, {ui}ni=1, Ξn, WΞn be defined in Definition 10. Suppose that xn

is induced from X, and Xn is induced by xn. We call that Yn = Ψ(B1,B2,B3; Ξn, Xn, T ) is induced

by yn = Φ(B1,B2,B3; Ξn, xn, T ).

Definition 13. ([213, Definition 4]) The ε-band cardinality of a graphon W , denoted by κεW , is the

number of eigenvalues λi of TW with absolute value larger or equal to ε, i.e.,

κεW = #{λi : |λi| ≥ ε}.

Definition 14. ([213, Definition 5]) For two graphons W and W ′, the ε-eigenvalue margin, denoted

by δεWW ′ , is given by

δεWW ′ = min
i,j 6=i
{|λi(TW ′)− λj(TW )| : |λi(TW ′)| ≥ ε},

where λi(TW ′) and λi(TW ) denote the eigenvalues of TW ′ and TW , respectively.

Assumption 3. ([213, AS1]) The spectral response of the convolutional filter of TB,W , defined as

b(λ) =
∑K−1

k=0 bkλ
k, is Ωb-Lipschitz in [−1,−ε] ∪ [ε, 1] and ωb-Lipschitz in (−ε, ε), with ωb < Ωb.

Moreover, |b(λ)| < 1.

Under Assumption 3, we can show that if a (large) graph filter is sampled from a graphon, then it
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can approximate the graphon filter. Define

Θ(Ω, ω) = (Ω +
πκεWΞn

δεWWΞn

)‖W −WΞn‖+ 2ωε. (4.40)

Lemma 10. ([213, Theorem 1]) Let TB1,W satisfy Assumption 3. Y and Yn are given in Defini-

tion 10 (ii). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤ Θ(Ω1, ω1)‖X‖+ (Ω1ε+ 2)‖X −Xn‖. (4.41)

Based on Lemma 10, we can extend the approximation property of generic graphs to the case where

multiple graphon filters are applied.

Assumption 4. ([213, AS5]) The activation functions are normalized Lipschitz, i.e., |ρ(x)−ρ(y)| ≤

|x− y|, and ρ(0) = 0.

Theorem 10. Let TB1,W and TB2,W satisfy Assumption 3, and ρ be an activation function satisfying

Assumption 4. Y and Yn are given in Definition 10 (iii). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤
2∑
i=1

Θ(Ωi, ωi)‖X‖+ (Ω2ε+ 2)‖X −Xn‖, (4.42)

where {Ωi, ωi}2i=1 are Lipschitz constants in Assumption 3.

Proof. The proof is given in Appendix C.1.

The results in Theorem 10 can be extended to any number of graphon filters.

Corollary 3. Let TB1,W , TB2,W , · · · , TBm,W satisfy Assumption 3, and ρ1, ρ2, · · · , ρm−1 satisfy As-

sumption 4. Y and Yn are given in Definition 10 (iv). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤
m∑
i=1

Θ(Ωi, ωi)‖X‖+ (Ωmε+ 2)‖X −Xn‖, (4.43)
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and {Ωi, ωi}mi=1 are Lipschitz constants in Assumption 3.

Proof. The proof is a straightforward extension of the proof in Appendix C.1.

Lemma 11. ([81, Theorem 2]) Let the convolutional filters that make up the layers of TB1,W satisfy

Assumption 3. Y and Yn are given in Definition 11 (ii). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤LFL−1Θ(Ω1, ω1)‖X‖+ (Ω1ε+ 2)‖X −Xn‖.

Similarly, based on Lemma 11, we can extend the approximation property of generic graphs to the

case where multiple WNNs are applied.

Theorem 11. Let the convolutional filters that make up the layers of TB1,W and TB2,W satisfy

Assumption 3, and ρ be an activation function satisfying Assumption 4. Y and Yn are given in

Definition 11 (iii). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤ LFL−1
2∑
i=1

Θ(Ωi, ωi)‖X‖+ (Ω2ε+ 2)‖X −Xn‖, (4.44)

where {Ωi, ωi}2i=1 are Lipschitz constants in Assumption 3.

Proof. The proof is given in Appendix C.2.

Similar to Corollary 3, the results in Theorem 11 can be extended to the case where any number of

WNNs are applied.

Corollary 4. Let TB1,W , TB2,W , · · · , TBm,W satisfy Assumption 3, and ρ1, ρ2, · · · , ρm−1 satisfy As-

sumption 4. Y and Yn are given in Definition 11 (iv). For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤
m∑
i=1

LFL−1Θ(Ωi, ωi)‖X‖+ (Ωmε+ 2)‖X −Xn‖, (4.45)

where {Ωi, ωi}mi=1 are Lipschitz constants in Assumption 3.
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Proof. The proof is a straightforward extension of the proof in Appendix C.2.

From Theorem 11 and Corollary 4, the transferability can be proved in GRNNs.

Theorem 12. Let the convolutional filters that makeup of the layers of TB1,W , TB2,W , and TB3,W

satisfy Assumption 3, and ρ1 and ρ2 be activation functions satisfying Assumption 4. Y and Yn are

given in Definition 12. For any 0 < ε ≤ 1, it holds that

‖Y − Yn‖ ≤ LFL−1
3∑
i=1

NiΘ(Ωi, ωi)‖X‖+ (Ω3ε+ 2)‖X −Xn‖, (4.46)

where {Ωi, ωi}3i=1 are Lipschitz constants in Assumption 3, and N1, N2, N3 are fixed constants only

depends on T .

Proof. From the definition of WRNN in (4.36) and (4.37), to prove Theorem 12, we only need to

apply Theorem 11 repeatedly. And the number of repetitions only depends on T , i.e., the number

of recurrences. So, the coefficients N1, N2, and N3 are fixed and only depend on T . We have the

desired results.

Remark 21. It is straightforward to see that if Yn and Y are obtained by (4.38), and yn is obtained

by (4.23), the transferability holds in a GRNN.

Since transferability holds in GRNNs, then the transferability should hold in action distributions,

which is given in (4.35). Note that the action distributions are discrete. To show the transferability,

we borrow the idea from the definition of graphons, i.e., we compare the action distributions with

their limit action distribution (which will be defined later).

In every learning step, we obtain a matrix ∆
(
see (4.34)

)
. Although ∆ is updated in the learning

process, it is fixed within each learning step. Define a set of labels

fi =
i− 1

FL
, 1 ≤ i ≤ FL. (4.47)
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Let Ii = [fi, fi+1)] for i = 1, 2, · · · , FL−1 and IFL = [fFL , 1]∪ [0, f1). From (4.26), we can construct

a graphon with respect to ∆ as follows,

W∆(u, v) =

FL∑
i=1

FL∑
j=1

[∆]ij1u∈Ii1v∈Ij . (4.48)

The continous version of softmax function Fsoftmax
(
see (4.35)

)
, denoted by F̃softmax, is defined as

follows,

(F̃softmaxX)(v) =
eX(v)∫ 1

0 e
X(u)du

. (4.49)

Similar to (4.49), we define a continuous action distribution as

A ∼ F̃softmaxX , (4.50)

and X is defined as follows: let Y1 and Y2 be any two outputs of (4.39), i.e., Y1, Y2 ∈ L2([0, 1]),

X (Y1, Y2) = 〈Y1, TW∆
Y2〉, (4.51)

where 〈·〉 is the inner product.

Definition 15. Consider a WRNN defined in Definition 12. Let Gn be a n-node generic graph with

node labels {ui}ni=1. Consider any two sequences of graphon signals {Xj}2j=1, Yj = Ψ(B1,B2,B3;W,Xj , T ).

Suppose that (Ξn, {xn,j}2j=1) is induced from (W, {Xj}2j=1), and (WΞn , {Xn,j}2j=1) is induced by

(Ξn, {xn,j}2j=1). Let yn,j = Φ(B1,B2,B3; Ξn, xj , T )
(
see (4.23)

)
, Yn,j = Ψ(B1,B2,B3; ΞM , Xj , T )(

see (4.39)
)
, and Xn(Yn,1, Yn,2) = 〈Yn,1, TW∆

Yn,2〉. Then, we call that An ∼ F̃softmaxXn is induced

by Vi,L∆V ′i,L
(
see (4.34)

)
.

Theorem 13. Let TB1,W , TB2,W , TB3,W , ρ1, and ρ2 be in Theorem 12. X1, X2, Y1, Y2, Yn,1, Yn,2,
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X , and Xn are given in Definition 15. For any 0 < ε ≤ 1, it holds that

‖X (Y1, Y2)−Xn(Yn,1, Yn,2)‖

≤ ‖TW∆
‖
(
C2
N‖X1‖‖X2 + (Ω3 + 2)2‖X1 −Xn,1‖‖X1 −Xn,2‖

+ CN (Ω3 + 2)‖X1‖‖X2 −Xn,2‖+ CN (Ω3 + 2)‖X2‖‖X1 −Xn,1‖
)
,

(4.52)

where CN = LFL−1
∑3

i=1NiΘ(Ωi, ωi), and N1, N2, N3 are given in Theorem 12.

Remark 22. From the definitions of WΞn, Xn,1 and Xn,2, for η > 0, we can choose large n and

small ε, such that Θ(Ωi, ωi) < η for i ∈ {1, 2, 3}, ‖X1 − Xn,1‖ < η, and ‖X2 − Xn,2‖ < η. This

implies ‖X (Y1, Y2)−Xn(Yn,1, Yn,2)‖ is bounded by a small scalar for any Y1, Y2, and graph Gn.

Remark 23. It is straightforward to see that if Yn,j and Yj are obtained by (4.38), and yn,j is

obtained by (4.23), with j ∈ {1, 2}, the transferability still holds in the distribution of the actions.

Proof. Refer to Appendix C.3.

Theorem 14. Let TB1,W , TB2,W , TB3,W , ρ1, and ρ2 be in Theorem 12. A is given in (4.50) and An

is given in Definition 15 (ii). For any small η > 0, there exists a 0 < ε ≤ 1 and a large n, such that

‖A−An‖ ≤ Γ · η (4.53)

where Γ is a constant independent of the WRNN Ψ(B1,B2,B3,WΞn , ·, T ) defined in (4.39).

Proof. Refer to Appendix C.4.

Finally, we apply the results above on stochastic graphs in Appendix C.5.

4.6. Simulations

We verify our analysis through simulations. We first provide the constructions of actors and crit-

ics in Section 4.6.1, we then give 3 baselines in Section 4.6.2, and numerical results are given in
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Section 4.6.3. Denote the adjacent matrix of EM as ΞM .

4.6.1. Features in Graph Actors and Critics

Features in Graph Actor We first consider the graph actors. Since we investigate decentralized

policies, then every node has a distinct graph for decision-making (as discussed in Section 4.4.2).

For oblivious policies, we define the node feature vji,k (defined in Section 4.4.2) as,

vji,k = [hji,k, c
j
i,k, [ΞM ]ij , I

j
i,k], (4.54)

where Iji,k is an indicator such that Iji,k = 1 if the jth agent caches the packet transmissted from the

ith agent in time k, otherwise Iji,k = 0. For non-oblivious policies, we define the node feature as,

vji,k = [
(
Xj,k −Xj

i,k

)2
, hji,k, c

j
i,k, [ΞM ]ij , I

j
i,k], (4.55)

In graph actors, edge features are not included. The information of edge is captured by the element

[ΞM ]ij in both (4.54) and (4.55).

Features in Graph Critic Recall that we consider two types of RL are considered, i.e., inde-

pendent learning (e.g., IPPO and IA2C) and centralized training and decentralized execution (e.g.,

MAPPO and MAA2C). The critics in both types are different since every agent has a distinct critic

in the former case, while all agents share a common critic in the latter case.

For independent learning, we let the graph critic has exactly the same formulation as that in

the graph actor, and the features are defined in (4.54) and (4.55). For centralized training and

decentralized execution, define the node features for the ith agent as
∑M

j=1 ΞM , i.e., the degree

of the ith agent; and define the edge features13 between ith agent and the jth agent as (4.54)(
respectively, (4.55)

)
in the class of oblivious policies (respectively, non-oblivious policies).

13To fully utilize the information in the graph, we consider a “general edge”: any pair of agents have an edge to
connect each other. If [ΞM ]ij = 0, then the edge is a virtual edge. If [ΞM ]ij = 1, then the edge is a real edge.
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4.6.2. Baselines

We consider three baselines: (i) Classical Reinforcement Learning, (ii) the Uniform Transmitting

policy, and (iii) the Adaptive Age-based policy.

The classical reinforcement learning algorithms used as baselines are given in [58], i.e., IPPO, IA2C,

MAPPO, and MAA2C. The main difference between classical reinforcement learning and graphical

reinforcement learning (see Section 4.4) is that in the former case, the actor and critic are fully

connected neural networks, while in the latter case, the actor and critic are graph convolutional

layers.

Now, we define the Uniform Transmitting policy and the Adaptive Age-based policy. In each time

slot, the ith agent can be either silent or transmit packets. The number of packets cached at the side

of the ith agent is
∑M

`=1 q
`
i,k, and the number of receivers is

∑M
j=1[ΞM ]ij . Thus, the total number of

actions for the ith agent in time k is 1 + (
∑M

j=1 q
j
i,k) · (

∑M
j=1[ΞM ]ij).

Definition 16. (Uniform Transmitting policy) In time slot k, the ith agent chooses to keep silent

with probability 1
1+(

∑M
`=1 q

`
i,k)·(

∑M
j=1[ΞM ]ij)

, and transmits the packet in Q`i,k to the jth agent with

probability
1{q`

i,k
=1}·1{[ΞM ]ij=1}

1+(
∑M
`=1 q

`
i,k)·(

∑M
j=1[ΞM ]ij)

.

If h`i,k is large, then the packet in Qi,` is old in time k. To keep the system as fresh as possible, we

can always let agents transmit packets in the queues with small AoI.

Definition 17. (Adaptive Age-based policy) Given a fixed scalar ε > 0. In time slot k, the ith agent

chooses to keep silent with probability eε

eε+
∑M
`=1 1{q`

i,k
=1}·e

1/(h`
i,k

+1)

14, and transmits the packet in Qi,`

to the jth agent with probability 1∑M
j=1[ΞM ]ij

·
1{q`

i,k
=1}·1{[ΞM ]ij=1}·e

1/(h`i,k+1)

eε+
∑M
`=1 1{q`

i,k
=1}·e

1/(h`
i,k

+1)
.

14We use h`i,k + 1 instead of h`i,k to avoid the case when h`i,k = 0.
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Figure 4.2: The performances of the state-of-the-art.

4.6.3. Numerical Results

For every learning episode, we let the time horizon be 1024 time slots. At the beginning of a learning

episode, we generate a random Watts-Strogatz graph. The models are trained on a sequence of

similar graphs. The performances of our proposed policies are given in Figure 4.2. In summary, our

proposed policies outperform the state-of-the-art. We discuss the simulation results in the following

aspects.

(i) The Graphical IPPOs (the dark orange and gold curves) outperform the classical IPPOs

(the light coral and saddle brown curves), and the Graphical MAPPOs (the purple and olive

curves) outperform the classical MAPPOs (the navy and fuchsia curves).

(ii) The Graphical MAPPO outperforms the Graphical IPPO, which implies that central-

ized learning and decentralized execution guarantee better performance than the independent

learning in our setting.

(iii) Under the Graphical IPPO, the oblivious and non-oblivious curves are close, while under

the graphical MAPPO, the non-oblivious policies are visibly better than the oblivious policies.

This implies that centralized learning and decentralized execution techniques can make the

most of information.
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Figure 4.3: The transferability of proposed policies.

(iv) For classical IPPO (the dark orange and gold curves), the estimation error explodes with

learning episodes, and the non-oblivious IPPO performs worse than policies IPPO. This is

because independent learning techniques suffer from non-stationarity, and more information

incurs more non-stationarity. Comparing the graphical IPPO and classical IPPO, we can

observe that graphical reinforcement learning can withstand non-stationarity.

The transferability is provided in Figure 4.3. We see that the models trained on 10-node networks

can be applied to larger networks. There are three interesting observations.

(i) The graphical IA2C and graphical MAA2C outperform the graphical IPPO and graphical

MAPPO, respectively. This is because compared to the A2C framework, the PPO framework

has an additional condition on the distribution of policy networks. Hence, the feasible region

of the PPO framework is a subset of that in the A2C framework in every learning step.

(ii) The gaps between our proposed policies and baselines increase with the number of sources.

We know that the transferability property keeps the sub-optimality. Then, the graphical

reinforcement learning framework has more benefits when the number of agents is larger. In

addition, when the number of sources is 10, the graphical IPPO performs worse than the

adaptive age-based policy (Baseline 2), while it gradually outperforms this baseline as the

number of agents increases.
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(iii) The graphical IPPO (respectively, the graphical IA2C) transfers better than graphical

MAPPO (respectively, MAA2C) after a certain network size. The transferability property

holds only in the class of GNN architectures which are built graph filters [213]. In MAPPO

and MAA2C, the critic GNN architectures are not built on graph filters. Therefore, the

phenomenon happens because the critic GNN architecture violates the transferability. We

believe that if we choose the critic GNN architectures built on graph filters, then the graphical

MAPPO (respectively, MAA2C) should outperform the graphical IPPO (respectively, IA2C)

in any number of agents.

4.7. Conclusion and Future Research

In this chapter, we investigated decentralized sampling and transmission policies to minimize the

time-average estimation error and/or time-average age of information in ad-hoc networks with M

sources. To capture the permutation equivalency of graphs, we proposed graphical reinforcement

learning frameworks. We further proved that our proposed frameworks have transferability proper-

ties, i.e., the models trained in small or moderate networks can be applied to large-scale networks.

Simulations showed that our proposed policies outperform the state-of-the-art, and verified the

transferability hold in our policies.

We will continue the research in two directions. Firstly, providing complete theoretical guarantees

for our proposed algorithms. For example, in some cases, the estimates have quantized error, then

if we can show that the proposed framework has robustness. Secondly, the framework can be

improved in an information-theoretic way, which makes our proposed framework more trustworthy

and reliable.
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CHAPTER 5

Age-Rate Tradeoffs in Broadcast Networks

In this chapter, we consider erasure networks and devise broadcast strategies that are efficient both

in AoI and rate. In the system, there are M senders and M receivers, where every sender transmits

packets to the intended receiver, and every receiver can cache all packets delivered. The inherent

tradeoff can be explained as follows. On the one hand, a higher rate can correspond to a smaller

delay/AoI (both in the sense that queues get emptied faster and that fewer uses of the network are

needed in total to transmit a fixed number of information bits). On the other hand, to achieve high

rates, we need to wait for the arrival of other packets and change transmission priorities to facilitate

coding, and this can lead to a larger AoI. To shed light on the above tradeoff, we build on our

previous work [36] and consider an erasure wireless network withM users. Motivated by the success

of age-based scheduling in wireless networks, we propose a scheduling framework where we schedule

various useful coding actions as opposed to the users. Within this framework, we can capture both

rate efficiency and age efficiency. Coding is known to provide significant benefits compared to time

sharing especially as the number of users M increases [153, 154, 155, 156]. Our work shows, for the

first time, that coding also provides benefits in terms of age and the gain increases by M sharply,

especially when the generation rate is small and/or the channel erasure probability is large. More

generally, we design deterministic coding policies that minimize the average AoI under given rate

constraints.

5.1. Literature Review

Timeliness is key for many applications and it has therefore emerged as a communication design

criterion. There are, however, tradeoffs between timeliness and rate in broadcast networks that

need to be more deeply revealed. Rate efficiency is often provided by channel coding schemes over

multiple realizations of the network and it comes at the cost of large delays. It is, therefore, not clear

a-priori what types of tradeoffs exist between rate and timeliness. Prior works have mainly studied

point-to-point channels [6, 94, 95]. In erasure channels,[9] proves that when the source alphabet
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and channel input alphabet have the same size, a Last-Come First-Serve (LCFS) policy with no

coding is optimal. This is in contrast to channel coding schemes that provide rate efficiency by block

coding. Considering erasure channels with FCFS M/G/1 queues, [46] finds an optimal block length

for channel coding to minimize the average age and average peak age. In the context of broadcast

packet erasure channels (BPECs) with feedback, coding is shown to be beneficial for age efficiency

with two users [36]. In related work, [96, 97] design optimal precoding schemes to minimize AoI in a

MIMO broadcast channel with multiple senders and receivers under FIFO channels without packet

management. Reference [98] analyzes AoI in a multicast network with network coding.

5.2. System Model

We consider a model where time is slotted. Transmission occurs in a wireless network which we

model by a Broadcast Packet Erasure Channel (BPEC) with M users. Let [M ] = {1, 2, · · · ,M}.

At the beginning of time slot k, a packet intended for user i is generated with probability θi. In

each time slot k, the input of the channel is the packet X(k) and the output at user i is:

Yi(k) =


X(k) if Zi(k) = 1

∆ otherwise

where {Zi(k)}∞k=1 is an iid Bernoulli process with probability 1−εi modeling erasure at user i ∈ [M ]

in time slot k ∈ {1, 2, · · · } and ∆ is the symbol denoting erasure. Due to the available feedback,

the encoder has the knowledge of {
(
Y1(`), Y2(`), · · · , YM (`)

)
}k`=1 in (the beginning of) time k + 1.

A packet can be cached by other user(s) (with some probability) if it is not delivered to its intended

user. Using the available feedback, the encoder can track the cached packets and exploit them as

side information in the code design to form more efficient coded packets that are simultaneously

useful for multiple users. Such code designs have also appeared in [153, 154, 155, 156] with a focus

on rate maximization. Note that the pairs
{

(Z1(k), Z2(k), · · · , ZM (k))
}
k
are iid across time but

potentially correlated across i ∈ [M ]. Let {
(
Z1, Z2, · · · , ZM

)
} have the same distribution with
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{
(
Z1(k), Z2(k), · · · , ZM (k)

)
} for any k. Define

εi := Pr
(
Zi = 0

)
, i ∈ [M ] (5.1)

σ(I) := Pr
(
Zi = 0, Zj = 1, i ∈ I, j ∈ [M ]\I

)
(5.2)

σ(I) represents the probability such that a packet is erased by users in I, and is cached by users

in [M ]\I. Note that erasure events at multiple users can be dependent in general, from (5.1) and

(5.2), σ({i}) <= εi. In particular, if the channels to individual users are independent and symmetric

(with ε1 = · · · = εM = ε), then σ(I) = (1− ε)M−|I|ε|I|.

In this work, we consider that several packets can be coded by linear network coding through XOR

operations only. This is because for broadcast erasure channels with multiple unicast traffic, coding

over larger finite fields may impose a larger decoding delay and is often practically less desirable,

but such simple coding operations (XOR operations) are practical and lead to low decoding delay

[217]. The transmission delay is assumed to be a unit time slot. After each transmission, the

transmitter receives ACK/NACK feedback from all receivers and can thus calculate and track the

aging of information at each user.

Now, we provide the following definitions to concrete our presentation of the paper.

Definition 18. A packet is called coded if it is formed by linearly combining more than one packet;

otherwise, it is called an uncoded packet.

Definition 19. Suppose that a coded packet x contains uncoded packets for user i. Then, user i

is called a destination (of packet x) if one can instantaneously decode x upon successful delivery

(possibly using its locally cached packets).

Definition 20. A coded packet x is fully decodable at user i if, upon successful delivery, user i can

recover all of the (uncoded) source packets that formed x (possibly from its local cache).

Note that even if packet x is fully decodable at user i, one may not be a destination of packet x.
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Finally, we introduce the indicator dS(k). Let dS(k) = 1 if users in S decodes a (coded) packet in

time k, and dS(k) = 0 otherwise. In particular, if S = {i}, then di(k) = 1 represents that user i

decodes a packet in time k.

Depending on the available caching and coding capabilities, we consider three classes of policies:

(i) policies that benefit from coding by caching uncoded packets;

(ii) policies that benefit from coding by caching more general linearly coded packets;

(iii) policies that schedule different users and perform no caching/coding [13, 14] (time-sharing

policies).

We investigate class (i) policies in Section 5.3, and refer to them as coding policies with uncoded

caching. The second class, referred to as coding policies with coded caching, is investigated in

Section 5.4. Time-sharing policies [13, 14] form benchmarks in our simulations and are discussed in

Appendix D.1.

5.2.1. Coding Actions

The idea of caching and coding on the fly is to cache overheard packets at the users and track them

using feedback at the encoder through a network of virtual queues. In the rest of the section, we

only consider class (i) policies where cached packets are uncoded, while in Section 5.4, we extend

the framework to (ii) policies.

Let Qi denote the queue of incoming packets for user i. If a packet chosen from Qi is transmitted

and received by its intended user, it is removed from the queue. If it is cached by non-intended

users, then the packet is removed from Qi and tracked at another virtual queue(s) by the encoder.

Define Qi,S as the virtual queue that tracks, at the encoder, uncoded packets for user i that are

cached only by the users in S, where S ⊂ [M ]\i. When S = ∅, we recover Qi,∅ = Qi. Note that

the queues Qi,S are defined so that the set of packets in them are disjoint. Queue Qi,S contains

two types of packets: packets from Qi,∅ that are cached by the users in S (see Example 1), and/or

uncoded packets combined within coded packets which are fully decoded. Packets stored in the
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virtual queues at the encoder can form efficiently coded packets that are simultaneously useful for

multiple users.

Example 1. Consider users 1, 2, and 3. Packets {ai}i≥1

(
respectively, {bi}i≥1 and {ci}i≥1

)
are

intended for user 1
(
respectively, user 2 and user 3

)
. In some time slot, consider 3 packets a1 ∈

Q1,{2}, b1 ∈ Q2,{1,3}, and c1 ∈ Q3,{2}. In the next time slot, suppose that the coded packet x = b1⊕c1

is transmitted, and is received by user 1. Since b1 ∈ Q2,{1,3}, then x is fully decodable at user 1,

hence c1 is cached at user 1.

More generally, consider a set of non-empty queues {Qτi,Sτi}
`
i=1 where τi is a user index (τi ∈ [M ])

and Sτi is a subset of [M ]\τi. Suppose the following condition holds:

Sτi ⊃ {∪`j=1,j 6=iτj} ∀i = 1, . . . `. (5.3)

Then XORing packets

pi ∈ Qτi,Sτi

forms a coded packet x as follows

x =
⊕̀
i=1

pi (5.4)

which is simultaneously decodable at all users {τ1, . . . , τ`}. To view condition (5.3) alternatively,

draw a side information graph G [218, 219] with nodes V = {1, . . . ,M}. Add an edge between nodes

(i, j) if Qi,Si is non-empty for some set Si that has j as an element. For example, if Q1,{2,3,4} is

non-empty, then a directed edge (oriented away node 1) between node 1 and node 2 (respectively,

node 3, node 4) exists. On this graph, condition (5.3) corresponds to the subgraph induced by

nodes {τ1, . . . , τ`} forming a cycle of size `. An example with a cycle of size 3 is shown in Figure 5.1

with 4 users. Consider packets p1 ∈ Q1,{2,3,4}, p2 ∈ Q2,{14} and p4 ∈ Q4,{12}. Cycle 1↔ 2↔ 4↔ 1

corresponds to the coded packet x = p1 ⊕ p2 ⊕ p4.
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Figure 5.1: Each cycle corresponds to a coded packet.

The subset of nodes {i1, i2, · · · , ij} is defined as a maximal cliques15 if (i) {i1, i2, · · · , ij} forms a

cycle, and (ii) {i1, i2, · · · , ij , l} can not form a cycle for any l ∈ V \{i1, i2, · · · , ij}. The coding

actions we consider in this section correspond to cycles on the side information graph (which has

to be updated on the fly after each transmission). In this class, it is sufficient to only consider the

maximal cliques because sending a coded packet that corresponds to a subset of a cycle is at most

as useful (in terms of the users at which the corresponding packet is decodable) as a coded packet

that corresponds to the maximal clique. The number of maximal cliques is of the order of 3
M
3 [220].

Among all possible maximal cliques, we aim to choose (schedule) one that leads to a coding action

with the most benefit in terms of information freshness and rate.

Note that each coding action can be described by a set of queues, each storing multiple packets.

We allow packet management to form coded packets as it reduces age without impacting the rate.

Recall that Qi,S is the queue that contains packets of user i that are decoded only by the users in S.

Thus, if pi ∈ Qi,S , for any S ′ ⊂ S and S ′ 6= S, pi /∈ Qi,S′ . In addition, if pi ∈ Qi,∅, then pi /∈ Qi,S

for all S 6= ∅. So the map from packets to queues is a surjection. The encoder decides among the

following actions, denoted by A(k), and defined below:

• A(k) = Qi,∅: a packet is transmitted from Qi,∅;

• A(k) = ⊕lj=1Qτj ,Sτj : a coded packet is transmitted that is formed by an XOR of l packets,

one from each of the queues Qτ1,Sτ1 , Qτ2,Sτ2 , · · · , Qτl,Sτl , where Sτl 63 τl and users τ1, τ2, · · · , τl
15Note that the term “maximal cliques” is defined in undirected graphs. Here, to convey the idea

(
condition (5.3)

)
clearly, we abuse the term in directed graphs (side information graphs)
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form a maximal clique on the side information graph.

Finally, we define an indicator function ti,S(k) as follows: ti,S(k) = 1 if the latest packet in Qi,S

is encoded and transmitted in time slot k, and ti,S(k) = 0 otherwise. In Figure 5.1, if the encoder

transmits p = a1 ⊕ a2 ⊕ a4 in time slot k, then t1,{2,3,4}(k) = 1, t2,{1,4}(k) = 1 and t4,{1,2}(k) = 1.

5.2.2. Age and Rate Efficiency

To capture the freshness of information, we use the metric of Age of Information (AoI) defined in

[221]. Denote hi(k) as the AoI of user i in time slot k. The age function hi(k) increases linearly

in time when no delivery for user i occurs and drops with every delivery to a value that represents

how old the received packet is. If an outdated packet (for user i) is received (meaning that a more

recently generated packet is previously received at user i), then the outdated packet does not offer

age reduction, and hi(k) keeps increasing linearly. Note that we consider a time-discrete model,

then hi(k) increases by 1 after a one-time slot.

Definition 21. Denote the generation time of the packet received by user i in time slot k as vi(k).

Assuming the initial state hi(0) = 1, the age function hi(k) evolves as follows:

hi(k) =

 min{hi(k − 1) + 1, k − vi(k)} di(k) = 1

hi(k − 1) + 1 di(k) = 0.

The expected weighted sum of AoI (EAoI) at the users is given by E[JπK ] where

JπK :=
1

MK

K∑
k=1

M∑
i=1

αih
π
i (k), (5.5)

the scalars α1, α2, · · · , αM are weights and the superscript π represents the communication policy.

We are interested in minimizing EAoI under given constraints on the rate of communications.

Define the communication rate to user i as the number of decoded packets (intended for user i) per

time slot in the limit of time. The larger the rate, the fewer packet in the network of virtual queues

at the encoder. Let qi be a strictly positive real value that represents the minimum rate requirement

113



of user i. Without loss of generality, we assume that q = (q1, q2, · · · , qM ) is in the capacity region

for which inner and outer bounds are known [14, 20, 153, 154, 155]. Similar to [14], we define the

communication rate of user i when policy π is employed as

rπi := lim
K→∞

1

K

K∑
k=1

E
[
dπi (k)

]
. (5.6)

The minimum rate constraint of each user is thus expressed by

rπi ≥ qi, i = 1, 2, · · · ,M. (5.7)

Ultimately, we seek to schedule the coding actions to achieve a judicious tradeoff between the EAoI

and communication rate, as outlined below. Combining (5.5), (5.6) and (5.7), the objective is given

by the following optimization problem:

J(q) := min
π

rπi ≥qi, i∈[M ]

lim
K→∞

E[JπK ] (5.8)

5.2.3. Notation

We use the notations E(·) and Pr(·) for expectation and probability, respectively. We denote scalars

by lowercase letters, e.g. s, vectors by underlined lowercase letters, e.g., s, and random variables

by capital letters, e.g. S. Sets are denoted by calligraphic letters, e.g. S. We use M to denote the

number of users, and K to denote the time horizon. The notation [n] denotes the set {1, 2, · · · , n}.

For two sets A and B, A ⊂ B represents that A is a subset of B. We summarize the notations in

Table 5.1.

5.3. Scheduling Coding Actions With Uncoded Caching

In this section, we consider coding policies with uncoded caching, i.e., all cached packets are uncoded.

We develop and analyze deterministic policies that schedule the coding actions to optimize (5.8).

Our framework can be generalized to the case where we allow the caching of coded packets as

outlined in Section 5.4.
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M The number of sources
K The time horizon
θi The generation/arrival rate of new packets for user i
εi The channel erasure probability for user i

dS(k) The indicator of decoding at users in S
A(k) Coding actions of the encoder
hi(k) The destination’s AoI at time k w.r.t source i
αi The weight for user i
π A specific transmission policy
JπK Expected weighted sum of AoI (EAoI)
rπi The communication rate of user i
qi The minimum rate requirement of user i

wi,S(k) The AoI of Qi,S in time slot k

Table 5.1: Useful notations in Chapter 5.

5.3.1. Encoder’s Age of Information

In order to optimize for age, we first define the AoI of queues Qi,S in the virtual network of queues

(at the encoder) and explain their time evolution. The following Lemma is proved in Appendix D.2

Lemma 12. If pj ∈ Qi,S has the generation time kj, j ∈ {1, 2}, and k2 > k1, then (encoding and)

transmitting p2 can not be worse than (encoding and) transmitting p1 in terms of AoI.

If S = ∅, denote the AoI of Qi,∅ as wi,∅(k), and the generation time of latest packet in Qi,∅ as k′.

Note that all new packets are generated in Qi,∅.

Definition 22. In time slot k,

wi,∅(k) = k − k′. (5.9)

By convention, wi,∅(0) = hi(0).

The evolution of the AoI at the queue Qi,∅ is as follows: wi,∅(k) drops to 0 if a new packet is
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generated; otherwise it increases by 1. Thus, the recursion of wi,∅(k) is

wi,∅(k + 1) =


0 a new packet is generated

wi,∅(k) + 1 otherwise.
(5.10)

Now we consider the AoI of Qi,S with S 6= ∅. Let the generation time of the latest packet in Qi,S

be k′. Similar with Definition 22,

Definition 23. In time slot k, wi,S(k) = min{k − k′, hi(k)}. By convention, wi,S(0) = hi(0).

From Definition 23, if k − k′ > hi(k), i.e., an older packet is cached in Qi,S , then the cached one

can not provide fresh information, thus let the AoI of Qi,S equal to the AoI of user i.

One can see that wi,S(k) increases by 1 unless (i) a fresher packet enters into the virtual queue

Qi,S ; (ii) the latest packet in Qi,S moves to other virtual queues at the encoder16. Let S ′ ⊂ S. The

recursion of wi,S(k) is

wi,S(k + 1) =


min{wi,∅(k) + 1, hi(k) + 1} P(1)

i,S (k)

min{wi,S′(k) + 1, hi(k) + 1} P(2)
i,S (k)

min{wi,S(k) + 1, hi(k) + 1} otherwise

. (5.11)

where

P(1)
i,S (k) = {di(k) = 0, dS(k) = 1, ti,∅(k) = 1}

and

P(2)
i,S (k) ={S ′ ⊂ S, di(k) = 0, dS\S′(k) = 1, ti,S′(k) = 1}.

16For example, If packet pi ∈ Qi,S is recovered by some other users in I, I∩S = ∅, then pi ∈ Qi,I∪S and pi /∈ Qi,S .
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From (5.10) and (5.11), the recursion of hi(k) is

hi(k + 1) =


wi,S(k) + 1 ti,S(k) = 1, di(k) = 1

hi(k) + 1 otherwise
. (5.12)

5.3.2. Age-based Scheduling in Two-user Networks

In this section, we consider a representative example of scheduling coding actions with uncoded

caching – age-based scheduling in two-user broadcast packet erasure channels.

To simplify the model in Section 5.2, we ignore the impact of communication rate, and consider the

users are scheduled with the goal of minimizing age. Furthermore, we simplify the model where new

packets are generated for the users (θi = 1 for i ∈ [2]) at the beginning of every time slot, and they

replace any undelivered packets from previous time slots. In each time slot k, the encoder decides

between the following three actions, denoted by A(k) ∈ {1, 2, 3} and defined below:

• A(k)=1: a packet is transmitted from Q1;

• A(k)=2: a packet is transmitted from Q2;

• A(k)=3: a coded packet is transmitted from Q1,{2}, Q2,{1}.

From Lemma 12, to attain the optimal age in the above class of 3−action coding algorithms, we can

assume, without loss of generality, that all queues are of buffer size 1 (Please refer to [36, Lemma 1]

for the detailed proof).

Then, we devise deterministic policies using techniques from Lyapunov Optimization. Denote

~h(k) = (h1(k), h2(k)) and ~s(k) = (h1(k), h2(k), w1,{2}(k), w2,{1}(k)). Define the Lyapunov func-

tion

L(~h(k)) =

2∑
i=1

βihi(k), (5.13)
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and the one-slot Lyapunov Drift

Θ(~h(k)) = E[L(~h(k + 1))− L(~h(k))|~s(k)]. (5.14)

Here, to coincide with (5.5), we can set βi = αi for i ∈ [2].

Definition 24. In each slot k, the MW policy chooses the action that has the maximum weight as

shown in Table 5.2:

A(k) Weights
1 β1(1− ε1)h1(k)

2 β2(1− ε2)h2(k)

3
∑

iβi(1−εi)1{wi,[2]\{i}(k)>0}hi(k)

Table 5.2: Coding actions and their weights in 2-user networks.

Theorem 15. The MW policy defined in Definition 24 minimizes the one-slot Lyapunov Drift in

each slot.

Proof. The proof can be found in [36, Theorem 1].

5.3.3. Age-Rate Max-Weight Scheduling

It is well established that coding can enhance the communication rate in erasure broadcast channels

[153], and may incur additional delays. To seek efficiency in both AoI and communication rate,

similar to [14, 36, 222], we propose Age-Rate Max-Weight (ARM) policies to minimize EAoI in

(5.8) under rate constraints.

We define the age-gain of queue Qi,S (for user i), where S ⊂ [M ]\i as follows:

δi,S(k) = hi(k)− wi,S(k). (5.15)

The term δi,S(k) quantifies how much the instantaneous age of information of user i reduces upon

successful delivery from the encoder’s virtual queue Qi,S . If Qi,S is empty or contains old packets,
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then by the definition of wi,S(k), δi,S(k) = 0.

Let yi(k) be the throughput debt associated with node i at the beginning of slot k [14, Eqn (35)]. It

evolves as follows:

yi(k + 1) = kqi −
k∑
τ=1

dπi (τ). (5.16)

The value of kqi is the minimum average number of packets that user i should have decoded by slot

k and
∑k

τ=0 d
π
i (τ) is the total number of recovered packets in the same interval. In fact, the strong

stability of the process y+
i (k) is sufficient to establish that the minimum rate constraint, rπi ≥ qi, is

satisfied [14], [223, Theorem 2.8].

Define the encoder’s state in time slot k as ~s(k) =
(
{hi(k)}i, {wi,S(k)}i,S , {xi(k)}i

)
, and the Lya-

punov function L
(
~s(k)

)
as

L
(
~s(k)

)
=

M∑
i=1

βihi(k) + λ

M∑
i=1

(
y+
i (k)

)2 (5.17)

where βi, λ > 0 are super-parameters. Here, the quadratic function for yi(k) is to maximize the rate

[14, 20, 222], and the linear function for hi(k) is to simplify the derivation. The one-slot Lyapunov

Drift is defined as

Θ(k) = E
[
L
(
~s(k + 1)

)
− L

(
~s(k)

)
|~s(k)

]
. (5.18)

Define the rate-gain of user i in time slot k as follows:

fi(k) =
((
yi(k) + qi

)+)2
−
((
yi(k) + qi − 1

)+)2
. (5.19)

Definition 25. In each slot k, the ARM policy chooses the action that has the maximum weight in

Table 5.3.

Remark 24. When AoI is the only metric in decision making (i.e., qi = 0 for all i) (see Lemma 12),
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A(k) Weights
Qi,∅ (1− εi)

(
βiδi,∅(k) + λfi(k)

)
⊕u∈[l]Qτu,Sτu

∑l
u=1 βτuδτu,Sτu (k)(1− ετu)+λ

∑l
u=1(1− ετu)fτu(k)

Table 5.3: Coding actions and their weights in M -user networks.

we can assume that the buffer size of every queue is 1 and the stability region is {θi ≤ 1, i =

1, 2, · · · ,M}.

Remark 25. We have observed in simulations that a good approximation of the above ARM policy

is obtained by choosing the maximal clique size l to be 2.

Theorem 16. The ARM policy defined in Definition 25 minimizes the one-slot Lyapunov Drift in

each slot.

Proof. The proof is given in Appendix D.3.

Now we set to obtain an upper bound on AoI under the rate constraints. In this paper, we consider

an upper bound with M = 3, one can generalize to an upper bound with arbitrary M using the

same idea straightforwardly and systematically. Let Cuncoded be the set of all tuples q = (q1, q2, q3)

for which {y+
i (k)}3i=1 is strongly stabilized using the coding actions A(k) defined in Section 5.2.1.

Generally speaking, the ARM policy (a centralized policy) outperforms the randomized policies

(decentralized policies) in terms of EAoI. To obtain an upper bound on EAoI, we introduce a

stationary randomized policy in which each action is chosen with a probability as described below:

Pr(A(k) = Qi,∅) = µi,∅ (5.20)

Pr{A(k) = ⊕j∈[l]Qτj ,Sτj } = µ(τ1,Sτ1 ,··· ,τl,Sτl ). (5.21)

In (5.21), we do not distinguish different permutations on {τj ,Sτj}j . For example, µ1,{3},3,{1} and
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µ3,{1},1,{3} are exactly the same. Clearly, we have

3∑
j=1

µi,∅ +

3∑
l=2

∑
τ1,Sτ1 ,··· ,τl,Sτl

µ(τ1,Sτ1 ,··· ,τl,Sτl ) = 1. (5.22)

To simplify the analysis, we assume that the channel to individual users is independent and sym-

metric, i.e., εi = ε, θi = θ, and qi = q for i ∈ [3]. Let τ1, τ2, τ3 be the user index, and

µi,∅ = µ, µτ1,{τ2},τ2,{τ1} = ζ1, µτ1,{τ2},τ2,{τ1,τ3} = ζ2

µτ1,{τ2,τ3},τ2,{τ1,τ3} = ζ3, µτ1,{τ2,τ3},τ2,{τ1,τ3},τ3,{τ1,τ2} = ζ4.

Then, (5.22) is reduced to 3µ+ 3ζ1 + 6ζ2 + 3ζ3 + ζ4 = 1. Upper bounding J(q) for the ARM policy,

we prove the following result in Appendix D.4.

Theorem 17. For any q ∈ Cuncoded, we have the following upper bound on J(q):

min
µ

1
3

∑3
i=1 αi

θ
+

1
3

∑3
i=1 αi

µ(1− ε)
+ λ

s.t 3µ+ 3ζ1 + 6ζ2 + 3ζ3 + ζ4 = 1

µ(1− ε3) ≥ q, (µ+ ζ2)(1− ε2) + ζ1(1− ε) ≥ q

µ(1− 2ε2 + ε3) + 2ζ1(1− ε) + 2ζ2(1− ε2) ≥ q

(µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4

)
(1− ε) ≥ q, µ ≥ 0, ζj ≥ 0, j ∈ [4].

(5.23)

Remark 26. On the right-hand side of the objective function in (5.23), the parameter λ shows

the influence of rate constraints on the upper bound. The larger λ, the more important role of

communication rate in decision-making, which results in the larger AoI. Hence, the upper bound in

(5.23) increases according to the increase of λ.
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5.4. Practical Scheduling Coding Actions with Coded Caching

In this section, we consider the coding policies with coded caching, where coded packets can be

cached by users.

5.4.1. Coding Actions

First of all, we introduce a new class of queues, denoted by QI,K: coded packets are formed by

uncoded packets intended for users in I only, and cached by users in K only
(
see Example 2-(1)

)
.

A coded packet in QI,K may contain more than one uncoded packet intended for the same user (see

Example 2-(2)). In addition, note that the intersection of I and K can be non-empty. It is obvious

that the coding situation is extremely sophisticated when the number of users is large. Thus, the

complexity of coding actions becomes extremely large because of coded caching.

Example 2. Suppose we have users 1, 2, 3, and 4. Packets {ai}i≥1

(
respectively, {bi}i≥1, {ci}i≥1,

and {di}i≥1

)
are intended for user 1

(
respectively, 2, 3, and 4

)
. Let b1 ∈ Q2,{3,4}, c1 ∈ Q3,{4}, and

d1 ∈ Q4,{3}.

(1) If the packet x = b1 ⊕ c1 ⊕ d1 is transmitted and received by users 1 and 217, both users can

not decode it, then I = {2, 3, 4} and K = {1, 2}.

(2) Let b2 ∈ Q2,{3,4}. The coding action x = b1⊕b2⊕c1⊕d1 is a valid action and the coded packet

x contains two packets (b1, b2) intended for user 2.

To simplify the analysis, we specialize our coding policies by the following assumptions.

Assumption 5. (1) I ∩ K = ∅.

(2) If x ∈ QI,K and x = ⊕j∈[l]pj, then p1, p2, · · · , pl are intended for distinct users in I.

Assumption 5 (1) implies that one can not cache a coded packet that contains an uncoded packet

intended for oneself. In other words, a destination user can extract the uncoded packet (intended

for oneself) from coded packets upon successful delivery. Under Assumption 5 (2), two uncoded
17Note that we consider the coded caching, then coding action b1 ⊕ c1 ⊕ d1 is a valid action.
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packets for an identical user can not be encoded in one coded packet. Finally, we define the length

of a coded packet as the number of uncoded packets encoded within it. From Assumption 5 (2),

the length of a coded packet is at most M .

Similar to Section 5.2.1, we consider a set of non-empty queues {Qτi,Sτi}
`1
i=1 and {QIj ,Kj}

`2
j=1, sup-

pose the following conditions hold:

Sτm ⊃ {τi}
`1
i=1,i 6=m ∪ {Ij}

`2
j=1, ∀m = 1, . . . `1

Km ⊃ {τi}`1i=1 ∪ {Ij}
`2
j=1,j 6=m, ∀m = 1, . . . `2

τi ∩ Ij = ∅, Ii ∩ Ij = ∅.

(5.24)

The last condition in (5.24) comes from Assumption 5 (2) directly. Then XORing packets

pi ∈ Qτi,Sτi , xj ∈ QIj ,Kj

forms a coded packet x as follows

x =

`1⊕
i=1

pi

`2⊕
j=1

xj (5.25)

which is simultaneously decodable at all users {τ1, . . . , τ`1} ∪ {Ij}
`2
j=1. To view condition (5.24)

alternatively, draw a side information graph G′ with nodes V ′ = {1, . . . ,M} ∪ {Ii}i, where Ii can

be regarded as a “big” node. Add an edge between nodes (i,m)
(
respectively, (Ij ,m)

)
if Qi,Si(

respectively, QIj ,Kj
)
is non-empty for some set Si

(
respectively, Kj

)
that has m as an element. On

this graph, condition (5.24) corresponds to the subgraph induced by a clique of size `1 + `2.

Note that the number of coding actions increases exponentially due to caching coded packets.

For clarity of ideas, we explain and derive for M = 3, one can extend in a straightforward manner.

Denote the packets intended for user 1, user 2 and user 3 as {at}t≥1, {bt}t≥1 and {ct}t≥1, respectively.

From Assumption 5, the length of coded packets is at most 3. Coded packets with length 3 must

have forms as at1 ⊕ bt2 ⊕ ct3 , and it must be decoded by all users
(
by Assumption 5 (1)

)
. In other
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words, a coded packet that is cached can only have length 2. Let I ∈ X =
{
{1, 2}, {1, 3}, {2, 3}

}
and u = [3]\I. Then the notation QI,K is reduced to QI,u. In QI,u, coded packets for users in I

are cached by user u, and packets in QI,u can be decoded by users in I (by Assumption 5 (1)). It is

obvious to show that if u1 6= u2, then the encoder would not encode packets from QI1,u1 , QI2,u2 . In

fact, suppose that x1 ∈ QI1,u1 , x2 ∈ QI2,u2 , then the length of coded packet x = x1⊕x2 is 4, which

contradicts with Assumption 5 (2). In each time slot k, the encoder decides among the following

actions, denoted by A(k), and defined below:

• A(k) = Qi,∅: a packet is transmitted from Qi,∅;

• A(k) = ⊕lj=1Qτj ,Sτj : a coded packet is transmitted from Qτ1,Sτ1 , · · · , Qτl,Sτl , where users

τ1, · · · , τl form a maximal clique on the side information graph, l = 2, 3.

• A(k) = Qτi,Sτi ⊕ QI,u: a coded packet is transmitted from Qτi,Sτi , QI,u, where τi, I form a

(general) maximal clique on the side information graph.

5.4.2. Age-Rate Max-Weighted Scheduling

Similar to Section 5.3.3, we propose an Age-Rate Max-Weighted policy, and a corresponding upper

bound. Before obtaining the Age-Rate Max-Weighted policy, we first need to define the AoI of

QI,u. Without loss of generality, we fix I = {1, 2}, u = 3. Let x1, x2 ∈ Q{1,2},3, and x1 = at1 ⊕ bt2 ,

x2 = at3⊕bt4 . By Assumption 5 (1), it suffices to assume that x1, x2 both can be decoded by users 1

and 2. Denote the generation time of at1 , at3 , bt2 , bt4 as e(t1), e(t3), v(t2), v(t4), respectively. Let

α1, α2, and α3 be defined in (5.5). If α1e(t1) + α2v(t2) > α1e(t3) + α2v(t4), then (encoding

and) transmitting x2 can not be worse than (encoding and) transmitting x1 in terms of AoI (see

Appendix D.5).

For I = {i, j} and any x ∈ QI,u, denote the corresponding generation time vector of uncoded

packets within x as (ei, vj). Suppose that packet x0 ∈ QI,u has the maximum weighted sum of

generation time18, i.e., x0 = max{x ∈ QI,u|αiei + αjvj}, and denote the corresponding generation
18Packet x0 is not always the latest packet in QI,u.
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time vector as (ei,0, vj,0). Now, we define the AoI of QI,l as

wI,u(k) =
(
w

(i)
I,u(k), w

(j)
I,u(k)

)
(5.26)

where

w
(i)
I,u(k) = min{k − ei,0, hi(k − 1) + 1}, w(j)

I,u(k) = min{k − vj,0, hj(k − 1) + 1}

and wI,u(0) = (hi(0), hj(0)). Similar with (5.15), we can define age-gain of QI,u as

δI,u(k) = hI(k)− wI,u(k) , (δ
(i)
I,u(k), δ

(j)
I,u(k)) (5.27)

where hI(k) =
(
hi(k), hj(k)

)
. Define ~b(k) =

(
{hi(k)}i, {wi,S(k)}i,S , {wI,u(k)}u, {xi(k)}i

)
. The

Lyapunov function L
(
~b(k)

)
is defined as

L
(
~b(k)

)
=

M∑
i=1

βihi(k) + λ
M∑
i=1

(
y+
i (k)

)2
, (5.28)

where λ, βi > 0 are positive super-parameters. We also define the one-slot Lyapunov Drift as

Θ(k) = E
[
L
(
~b(k + 1)

)
− L

(
(~b(k)

)
|~b(k)

]
. (5.29)

Definition 26. Let fi(k) be defined in (5.19). The ARM policy chooses the action that has the

maximum weight as follows:

A(k) Weights
Qi,∅ (1− εi)

(
βiδi,∅(k) + λfi(k)

)
⊕u∈[l]Qτu,Sτu

∑l
u=1 βτuδτu,Sτu (k)(1− ετu)+λ

∑l
u=1(1− ετu)fτu(k)

Qu,i ⊕Qu,I βuδu,i(k)(1− εu) + λ(1− εu)fu(k) + βiδ
(i)
I,u(k)(1− εi) + λ(1− εi)fi(k)

Qu,I ⊕QI,u βuδu,I(k)(1− εu) +
∑
I:i∈I βiδ

(i)
I,u(k)(1− εi) + λ

∑
i∈[3](1− εi)fi(k)

Theorem 18. The ARM policy defined in Definition 26 minimizes the one-slot Lyapunov Drift in
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each slot.

Proof. The proof is very similar to that of Theorem 16 in Appendix D.3.

Finally, we set to obtain an upper bound on AoI under the rate constraints. Let Ccoded be the set

of all tuples q = (q1, q2, q3) for which {y+
i (k)}3i=1 is strongly stabilized using coding actions A(k)

defined in Section 5.4.1. Similar to Section 5.3, we introduce a stationary randomized policy in

which

Pr(A(k) = Qi,∅) = µi,∅ (5.30)

Pr(A(k) = ⊕j∈[l]Qτj ,Sτj ) = µτ1,Sτ1 ,··· ,τl,Sτl (5.31)

Pr(A(k) = Qτi,Sτi ⊕QI,u) = µτi,Sτi ,I,u (5.32)

In (5.31)
(
respectively, (5.32)

)
, we do not distinguish different permutations on {τj ,Sτj}j

(
respectively,

{τi,Sτi} and {I, u}
)
. Then, to simplify the complicated coding situation, we consider a stationary

randomized policy in an independent and symmetric channel, i.e., εi = ε, θi = θ, and qi = q for

i ∈ [3], and σ(I) = ε|I|(1− ε)3−|I|. By symmetry, we define

µi,∅ = µ, µτ1,{τ2},τ2,{τ1} = ζ1, µτ1,{τ2},τ2,{τ1,τ3} = ζ2, µτ1,{τ2,τ3},τ2,{τ1,τ3} = ζ3,

µτ1,{τ2,τ3},τ2,{τ1,τ3},τ3,{τ1,τ2} = ζ4, µ{τ1,τ2},τ3,τ3,{τ1} = ζ5, µ{τ1,τ2},τ3,τ3,{τ1,τ2} = ζ6.

Upper bounding J(q) for the ARM policy, we prove the following result in Appendix D.6.
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Theorem 19. For any q ∈ Ccoded, we have the following upper bound on J(q):

min
µ

1
3

∑3
i=1 αi

θ
+

1
3

∑3
i=1 αi

µ(1− ε)
+ λ

s.t 3µ+ 3ζ1 + 6ζ2 + 3ζ3 + ζ4 + 6ζ5 + 3ζ6 = 1

µ(1− ε3) ≥ q, (µ+ ζ2)(1− ε2) + ζ1(1− ε+ ε2 − ε3) ≥ q

µ(1− 2ε2 + ε3) + 2ζ1(1− ε+ ε2 − ε3) + 2ζ2(1− ε2) ≥ q

(µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4

)
(1− ε) + 2ζ1(ε2 − ε3) ≥ q(

µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4 + 2ζ5 + ζ6

)
(1− ε) + ζ1(ε2 − ε3) ≥ q(

µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4 + 4ζ5 + 2ζ6

)
(1− ε) ≥ q, µ ≥ 0, ζj ≥ 0, j ∈ [6].

(5.33)

5.5. Lower Bound

In prior works [14, 36, 37], lower bounds were found on AoI as a function of the communication

rate. Similar to [37, Section III], we derive two lower bounds on the achievable age. The first lower

bound is derived by assuming that there is always a fresh packet to be delivered. The second one

assumes that all packets are delivered instantaneously upon arrivals.

Theorem 20. For any policy π with communication rate rπi , we have the following lower bounds

on Jπ(q) in (5.8):

Jπ(q) ≥ M

2
∑M

i=1 r
π
i /αi

+
M∑
i=1

αi
2M

(5.34)

Jπ(q) ≥ 1

M

M∑
i=1

αi
θi

(5.35)

Proof. The proof of (5.34) can be found in [37, Appendix B], and the proof of (5.35) can be found

in [37, Appendix C].

In (5.34), as the communication rate increases, the lower bound on EAoI decreases. The rate terms

rπi in (5.34) satisfy rπi ≥ qi, but it is not clear if we can replace them with qi because (5.8) may
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admit its optimal solution at rates larger than the target values qi. The high rate of communication

is indeed useful for age minimization. This is the reason why coding and caching can ultimately

reduce age as shown in our work. In (5.35), as θi increases, i.e., more fresh packets are generated,

the lower bound on EAoI decreases capturing the importance of frequent updating. This bound is

active in regimes where new packets are generated less frequently.

Corollary 5. For symmetric networks with independent erasure events, the lower bound in (5.34)

leads to

Jπ(q) ≥ M

2
∑M

j=1
1

1−εj
∑M

i=1
1
αi

+
M∑
i=1

αi
2M

.

Proof. The proof of Corollary 5 is given in Appendix D.7.

5.6. Numerical Results

Finally, we seek to answer the questions that we raised at the very beginning of this chapter through

simulations. We consider symmetric networks with εi = ε, qi = q, and θi = θ for i ∈ [M ].

5.6.1. Benefits of Coding
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(a) EAoI and the lower bounds.
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Figure 5.2: EAoI as a function of ε and θ when M = 6, the upper bound, and the lower bounds
(left). EAoI under ARM policies with different maximal cliques (right).

We first consider the benefits of coding. The ARM policy and the Time-sharing policy are compared

in Figure 5.2a and Figure 5.3. To eliminate the impact of rate, we consider the case defined in
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Figure 5.3: AoIgap as a function of different parameters.

Remark 24, i.e., the buffer size of every queue is 1 and the stability region is {θ ≤ 1}. We have

set λ = 0 and αi = min
{
i,max{0, i − 3}

}
. Figure 5.2a plots the EAoI for M = 6 users under the

ARM and time-sharing policies, and against the lower bound in (5.34). We observe that coding is

indeed beneficial when the erasure probability ε is relatively large (≥ 0.6) and/or the arrival rate θ

is relatively small (≤ 0.5). When θ is fixed, EAoI increases with ε.

Next, we define AoIgap as the gap between the EAoI under the ARM and time-sharing policies.

The relationship between AoIgap and θ (resp. ε) is provided in Figure 5.3a (resp. Figure 5.3b).

In Figure 5.3a, we set ε = 0.6. We observe that AoIgap (the benefit of coding) decreases with the

arrival rate θ. This is because the (expected) number of newly incoming packets increases with θ

and the availability of fresh uncoded packets weakens the impact of coding actions.

In Figure 5.3b, we set θ = 0.2. AoIgap increases with ε. This is because erased packets can be cached

and provide more coding opportunities. AoIgap increases slowly when ε is small, and sharply when

ε is large. In addition, from Figure 5.3a and Figure 5.3b, the benefits of coding increase with M .

5.6.2. Impact of Maximal Clique Size

The impact of maximal clique size is captured in Figure 5.2b. Let the buffer size of all (virtual)

queues be 1 and setM = 6, λ = 0, ε = 0.6 and αi =
⌈
i
2

⌉
. ARM in Definition 25 with maximal clique

sizes = 2, 3, 4 are compared in Figure 5.2b. From Figure 5.2b, we can see that the ARM policy
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with maximal clique size of 2 is a good approximation. This is useful as it significantly reduces the

number of coding actions.

5.6.3. Tradeoff between Age and Rate

We finally investigate the tradeoff between the AoI and rate. Set M = 3. The maximum sum rate

achievable with uncoded caching is around 0.44, and the channel capacity is around 0.46. Setting

αi = 3 and ε = 0.6 in the ARM policy, we first investigate the relationship between q and EAoI

(the red star curve in Figure 5.4a). Now set θ = 0.14, λ = 10, q ∈ [0, 0.1368]. EAoI increases with q

implying that if the minimum required throughput becomes larger, the system has to sacrifice EAoI

to satisfy the rate constraints. Next, the relationship between λ and EAoI is investigated (the black

circle curve in Figure 5.4a). Let θ = 0.14, q = 0.1368, λ ∈ [0, 10]. EAoI increases with λ. In other

words, if the rate constraints become more important, then EAoI increases.

Finally, in Figure 5.4b, the EAoI is plotted as a function of the communication rate under the time-

sharing policy as well as the ARM policy with uncoded and coded caching. This plot is obtained

by setting αi = i, θ = q, and λ = 1. We observe that EAoI decreases as the rate increases. From

the viewpoint of expectation, almost all packets are successfully delivered. The increase in theta

implies more fresh packets are generated, and the increase in q (which equals θ) implies more fresh

packets are delivered. Thus, the EAoI decreases. The three policies have similar performances up

to the rate they support. It appears that ARM with coded caching outperforms the other policies

when the rate close to the boundary of the capacity region.

5.7. Conclusion

We investigated the benefits of coding in memoryless broadcast channels withM users. A scheduling

framework is proposed in which coding actions, as opposed to users, are scheduled to attain desired

tradeoffs between rate and age of information (AoI). Two general lower bounds and the upper bound

for the proposed MW policies are obtained. The simulation showed that (i) coding is beneficial, and

the benefits increase with the number of users; (ii) the tradeoff between rate and AoI exists, which

implies that the system has to sacrifice AoI to achieve a higher rate; (iii) a good approximation of

proposed policies is obtained based on maximum clique size of information graph.
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CHAPTER 6

Exploitation and Exploration in Sequential Learning

We consider learning and decision-making in networked systems for processes that evolve both

temporally and spatially. An important example in this class of processes is COVID-19 infection.

It evolves in time (e.g. through different stages of the disease for an infected individual) and over

a contact network and its spread can be contained by testing and isolation. Public health systems

need to judiciously decide who should be tested and isolated in the presence of limitations on the

number of individuals who can be tested and isolated on a given day.

The following challenges arise in the design of intelligent testing strategies if one seeks to exploit the

spatiotemporal evolution of the disease process and comply with limited testing budgets. Observing

the state of a node at time t will provide information about the state of (i) the node in time t+ 1

and (ii) the neighbors of the node at time t, t + 1, . . .. This is due to the inherent correlation that

exists between states of neighboring nodes because an infectious disease spreads through contact.

Thus, testing has a dual role. It has to both detect/isolate infected nodes and learn the spread in

various localities of the network. The spread can often be silent: an undetected node (that may not

be particularly likely to be infected based on previous observations) can infect its neighbors. Thus,

testing nodes that do not necessarily appear to be infected may lead to the timely discovery of even

larger clusters of infected nodes waiting to explode. In other words, there is an intrinsic tradeoff

between the exploitation of knowledge vs. exploration of the unknown.

6.1. Literature Review

SIR and Variants: Most existing have investigated the spread of COVID-19 through dynamic

systems such as SIR models and their variants [99, 100, 101, 102, 103, 104]. These models are

made more complex to fit the real data in [105, 106, 107, 108, 109, 110]. Estimation of the model

parameters by learning-based methods are considered and verified by real data in [111, 112, 113,

114, 115, 116]. Other attributes such as lockdown policy [117], multi-wave prediction [118], herd

immunity threshold [119] are also considered by data-driven experiments. These works mostly
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focus on the estimation of model parameters through real data, and aim to make a more accurate

prediction of the spread. None of them, however, consider testing and isolation policies. Our work

complements these investigations by designing sequential testing and isolation policies in order to

minimize cumulative infections. For this purpose, we have assumed full statistical knowledge of the

spread model and the underlying contact network and we are not concerned with prediction and

estimation of model parameters.

Mean-field Approximations: Designing optimal testing and control policies in dynamic net-

worked systems often involves computational challenges. These challenges have been alleviated in

control literature by capturing the spread through differential equations [120, 121, 122, 123, 124].

The differential equations rely on classical mean-field approximations, considering neighbors of each

node as “socially averaged hypothetical neighbors”. Refinements of the mean-field approximations

such as pair approximation [125], degree-based approximation [126], meta-population approxima-

tion [127] etc, all resort to some form of averaging of neighborhoods or more generally groups of

nodes. The averaging does not capture the heterogeneity of a real-world complex social network

and in effect disregards the contact network topology. But, in practice, the contact network topolo-

gies are often partially known, for example, from contact tracing apps that individuals launch on

their phones. Thus testing and control strategies must exploit the partial topological information

to control the spread.

Contact Tracing: The most widely deployed testing and control policy, the (forward and back-

ward) contact tracing (and its variants) [128, 129, 130, 131, 132, 133, 132, 134, 135], relies on partial

knowledge of the network topology (ie, the neighbors of infectious nodes who have been detected),

and therefore does not lend itself to mean-field analysis. Contact tracing policies are in a sense ex-

ploitation policies: upon finding positive nodes, they exploit that knowledge and trace the contacts.

While relatively practical, they have two main shortcomings, as implemented today: (i) They are

not able to prioritize nodes based on their likelihood of being infected (beyond the coarse notion

of contact or lack thereof). For example, consider an infectious node that has two neighbors, with

different degrees. Under current contact tracing strategies, both neighbors have the same status.

But in order to contain the spread as soon as possible, the node with a large degree should be
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prioritized for testing. A similar drawback becomes apparent if the neighbors themselves have a

different number of infectious neighbors; one with a larger number of infectious neighbors should

be prioritized for testing, but current contact tracing strategies accord both the same priority. (ii)

Contact tracing strategies do not incorporate any type of exploration. This may be a fundamental

limitation of contact tracing. [135] has shown that, with high cost, contact tracing policies perform

better when they incorporate exploration (active case finding). In contrast, our work provides a

probabilistic framework to not only allow for exploitation in a fundamental manner but also to

incorporate exploration in order to minimize the number of infections.

Exploration vs. Exploitation Tradeoffs: Exploration vs. exploitation tradeoffs were originally

studied in classical multi-armed bandit (MAB) problems where there is the notion of a single optimal

arm that can be found by repeating a set of fixed actions [136, 137, 138]. MAB testing strategies

have also been designed for exploring partially observable networks [139]. Our problem differs from

what is mainly studied in the MAB literature because (i) the number of arms (potential infected

nodes) is time-variant and actions cannot be repeated; (ii) the exploration vs. exploitation tradeoff

in our context arises due to lack of knowledge about the time-evolving set of infected nodes, rather

than lack of knowledge about the network or the process model and its parameters. Our problem

is also related to active search in graphs where the goal is to test/search for a set of (fixed) target

nodes under a set of given (static) similarity values between pairs of nodes [140, 141, 142, 143]. But

the target nodes in these works are assumed fixed, whereas the target is dynamic in our setting

because the infection spreads over time and space (i.e., over the contact network). Thus, a node

may need to be tested multiple times. The importance of exploitation/exploration is also known,

implicitly and/or explicitly, in various reinforcement learning literature [144, 145, 146].

We now distinguish our work from testing strategies that combine exploitation and exploration in

some form [147, 148, 149]. Through a theoretical approach, [147] models the testing problem as

a partially observable Markov decision process (POMDP). An optimal policy can, in principle, be

formulated through POMDP, but such strategies are intractable in their general form (and heuris-

tics are often far from optimal) [150, 151]. [147] devises tractable approximate algorithms with a
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significant caveat: In the design, analysis, and evaluation of the proposed algorithms, it is assumed

that at each time the process can spread only on a single random edge of the network. This is a

very special case that is hard to justify in practice and it is not clear how one could go beyond

this assumption. On the other hand, [148] proposes a heuristic by implementing classical learning

methods such as Linear support vector machine (SVM) and Polynomial SVM to rank nodes based

on a notion of risk score (constructed by real data) while reserving a portion of the test budget for

random testing which can be understood as exploration. No spread model or contact network is

assumed. [149] and this work was done concurrently. In [149], a tractable scheme to control dynam-

ical processes on temporal graphs was proposed, through a POMDP solution with a combination

of Graph Neural Networks (GNN) and Reinforcement Learning (RL) algorithm. Nodes are tested

based on some scores obtained by the sequential learning framework, but no fundamental probabil-

ities of the states of nodes were revealed. Different from [148, 149], our approach is model-based

and we observe novel exploration-exploitation tradeoffs that arise not due to a lack of knowledge

about the model or network, but rather because the set of infected nodes is unknown and evolves

with time. We can also utilize knowledge about both the model and the contact network to devise

a probabilistic framework for decision-making.

Finally, we summarize the contribution of some significant works that consider only exploitation and

do not utilize any exploration [132, 134, 135]. [132, 134] have considered a combination of isolation

and contact tracing sequential policies, and [132] has shown that the sequential strategies would

reduce transmission more than mass testing or self-isolation alone, while [134] has shown that the

sequential strategies can reduce the amount of quarantine time served and cost, hence individuals

may increase participation in contact tracing, enabling less frequent and severe lockdown measures.

[135] have proposed a novel approach to modeling multi-round network-based screening/contact

tracing under uncertainty.

6.2. System Model

To describe a spreading process, we use a discrete-time compartmental model [224]. Over decades,

compartmental models have been key in the study of epidemics and opinion dynamics, albeit often
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disregarding the network topology. In this work, we capture the spread on a given contact network.

For clarity of presentation, we focus on a model for the spread of COVID-19. The ideas can naturally

be generalized to other applications. The main notations in the full paper are given in Table 6.1.

Notations Definitions
β transmission probability

1/γ mean duration in the latent state
1/λ mean duration in the infectious state
σi(t) state of node i at time t, σi(t) ∈ {I, S, L,R}
G(t) contact network at time t
V(t) set of nodes at time t
E(t) set of edges at time t
N(t) cardinality of V(t)

N N = N(0)

∂i(t) neighbors of node i at time t
∂+
i (t) {i} ∪ ∂i(t)
Yi(t) testing result of node i at time t
O(t) set of nodes tested at time t
Y (t) {Yi(t)}{i∈O(t)}
B(t) testing budget at time t
π a testing and isolation policy

Cπ(t) cumulative infections at time t
Kπ(t) set of nodes tested at time t (under policy π)
Kπ(t) Kπ(t) = |Kπ(t)|
T time horizon
vi(t) true probability vector of node i
ui(t) prior probability vector of node i
wi(t) posterior probability vector of node i
ei(t) updated posterior probability vector of node i
ri(t) rewards of selecting node i at time t
r̂i(t) estimated rewards of node i at time t
Ψi(t) Ψi(t) = O(t) ∩ ∂+

i (t− 1)

Φi(t) Φi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ Ψi(t)}\{i}

θi(t) θi(t) = σi(t)|{Y (τ)}t−1
τ=1

, θi(t) ∈ {I, S, L,R}
ζi(t) ζi(t) = σi(t)|{Y (τ)}tτ=1

, ζi(t) ∈ {I, S, L,R}

Table 6.1: Useful notations in Chapter 6.

We model the progression of Covid-19 per individual, in time, through four stages or states: Sus-

ceptible (S), Latent (L), Infectious (I), and Recovered (R). Per contact, an infectious individual

infects a susceptible individual with transmission probability β. An infected individual is initially
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Figure 6.1: Time evolution of the process per individual nodes (left). A contact network with nodes
in states (blue) susceptible, (pink) latency, (red) infectious, (yellow) recovered (right).

in the latent state L, subsequently, he becomes infectious (state I), and finally, he recovers (state

R). Fig. 6.1 (left) depicts the evolution. The durations in the latent and infectious states are geo-

metrically distributed, with means 1/λ, 1/γ respectively. We represent the state of node i at time

t by random variable σi(t) and its support set X = {S,L, I,R}. We assume that the parameters

β, λ, and γ are known to the public health authority. This is a practical assumption because the

parameters can be estimated by the public health authority based on the pandemic data collected

[225, 226, 227].

Let G(t) = (V(t), E(t)) denote the contact network at time t, where V(t) is the set of nodes/individuals,

of cardinality N(t), and E(t) is the set of edges between the nodes, describing interactions/contacts

on day t. Let V = V(0), E = E(0), G = G(0), and N = N(0). The network is time-dependent

not only because interactions change on a daily basis, but also because nodes may be tested and

isolated. If a node is tested positive on any day t, it will be isolated immediately. If a node is

isolated on any day t, we assume that it remains in isolation until it recovers. We assume that

a recovered node can not be reinfected again. Thus a node that is isolated on any day t has no

impact on the network from then onwards. Such nodes can be regarded as “removed”. Therefore,

it is removed from the contact network for all subsequent times t, t+ 1, . . .. Fig. 6.1 (right) depicts

a contact network at a given time t. We assume that a public health authority knows the entire

contact network and decides who to test based on this information. This assumption has been made

in several other works in this genre eg in [135].
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Denote the set of neighbors of node i, on day t, by ∂i(t). The state of each node at time t + 1

depends on the state of its neighbors ∂i(t), as well as its own state in day t, as given by the

following conditional probability:

Pr
(
σi(t+ 1)|{σj(t)}j∈∂+

i (t)

)
where ∂+

i (t) = ∂i(t) ∪ {i}.

Node i is tested positive on the day t if it is in the infectious state (I)19. Let Yi(t) denote the test

result:

Yi(t) =

 1 σi(t) = I

0 σi(t) ∈ {S,L,R}.
(6.1)

We do not assume any type of error in testing and Yi(t) is hence a deterministic function of σi(t).

Let O(t) be the set of nodes that have been tested (observed) in day t and denote the network

observations at time t by Y (t) = {Yi(t)}i∈O(t).

Our goal in this paper is to design testing and isolation strategies in order to contain the spread

and minimize cumulative infections. Naturally, testing resources (and hence observations) are often

limited and such constraints make decision-making challenging. Let B(t) be the maximum number

of tests that could be performed in day t, called the testing budget. B(t) can evolve based on the

system necessities, e.g., in contact tracing that is widely deployed for COVID-19, the number of

tests is chosen based on the history of observations20. Also, governments often upgrade testing

infrastructure as the number of cases increases. Our framework captures both fixed and time-

dependent budget B(t), but we focus on time-dependent B(t) for simulations.

Define the cumulative infections on the day t, denoted by Cπ(t), as the number of nodes who have

been infected before and including day t, where π is the testing and isolation policy. Let Kπ(t)

19We assume that a node in the latent state L is infected, but not infectious. We further assume that latent nodes
test negative.

20In practical implementations, scheduling constraints do play a role but we disregard that in this work.
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denote the set of tests π performs on day t. Given a large time horizon T , our objective is:

min
π

E[Cπ(T )]

s.t. |Kπ(t)| ≤ B(t), 0 ≤ t ≤ T − 1.

(6.2)

Recall that σi(t), the state of node i on day t, is a random variable and unknown. For each node

i, define a probability vector vi(t) of size |X |, where each coordinate is the probability of the node

being in a particular state at the end of time t. The coordinates of vi(t) follow the order (I, L,R, S)

and we have

vi(t) =
[
v(i)
x (t)

]
x∈X , v(i)

x (t) = Pr
(
σi(t) = x

)
. (6.3)

For example, v(i)
S (t) represents the probability of node i being in state S in time t. We now define

Fi(D; t) to be the conditional probability of node i being infected by nodes in D (for the first time)

at day t, as a function of the nodes’ states {σi(t)}i∈V(t). We have

Fi(D; t) = 1{σi(t)=S} ·
∏

j∈∂i(t)\D

(
1− β1{σj(t)=I}

)
·
(
1−

∏
j∈D∩∂i(t)

(1− β1{σj(t)=I})
)
. (6.4)

Equation (6.4), captures the impact that the nodes in D have on infecting node i at day t. In this

equation, we assume that the infections from different nodes are independent. The same assumption

has also been made in several other papers in this genre, eg in [125, 126, 127]. Then, we find the

expectation (with respect to {σi(t)}i∈V(t)) of (6.4) as follows:

E{σi(t)}i∈V(t)
[Fi(D; t)] = v

(i)
S (t) ·

{ ∏
j∈∂i(t)\D

(1− βv(j)
I (t))

}
·
{

1−
∏

j∈D∩∂i(t)

(1− βv(j)
I (t))

}
. (6.5)

It is worth noting that (6.4) is a probability conditioned on {σi(t)}i∈V(t), while (6.5) is an un-

conditional probability. To obtain (5), we have indeed assumed that the states of the nodes are

independent. This assumption does not hold in general and we only utilize it here to obtain a

simple expression in (5) in terms of the infection probabilities. We do not use this independence
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assumption in the rest of the paper. Define

S
(
D; t

)
=
∑
i∈V(t)

E [Fi(D; t)] . (6.6)

Here, S
(
D; t

)
represents the (expected) number of newly infectious nodes incurred by nodes in D

at day t. Recall that Kπ(t) is the set of nodes that are tested at time t. We show the following

result in Appendix E.1.

Lemma 13. E
[
Cπ(t+ 1)− Cπ(t)

]
= S

(
V(t)\Kπ(t); t

)
.

6.2.1. Supermodularity

It is complex to solve (6.2) globally, especially if one seeks to find solutions that are optimal looking

into the future. We thus simplify the optimization (6.2) for policies that are myopic in time as

follows. First, note that Cπ(T ) can be re-written as follows through a telescopic sum:

Cπ(T ) =
T−1∑
t=0

Cπ(t+ 1)− Cπ(t). (6.7)

Then, we restrict attention to myopic policies that at each time minimize E [Cπ(t+ 1)− Cπ(t)]. We

then show how E [Cπ(t+ 1)− Cπ(t)] can be expressed in terms of a supermodular function.

Using (6.7) along with Lemma 13, we seek to solve the following optimization sequentially in time

for 0 ≤ t ≤ T − 1:

min
|Kπ(t)|≤B(t)

S
(
V(t)\Kπ(t); t

)
. (6.8)

We now prove some desired properties for the set function S(Kπ(t); t) (see Appendix E.2).

Theorem 21. S
(
Kπ(t); t

)
defined in (6.6) is a supermodular21 and increasing monotone function

on Kπ(t).

On day t, and given the network, the probability vectors of all nodes, and Kπ1 (t) ⊂ Kπ2 (t), for any
21Let X be a finite set. A function f : 2X → R is supermodular if for any A ⊂ B ⊂ X , and x ∈ X\B,

f(A ∪ {x})− f(A) ≤ f(B ∪ {x})− f(B).
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node i /∈ Kπ2 (t), node i will incur larger increment of newly infectious nodes under Kπ2 (t) than

that under Kπ1 (t). This is because node i may have common neighbors with nodes in Kπ2 (t). So,

supermodularity holds in Theorem 21.

The optimization (6.8) is NP-hard [228]. However, using the supermodularity of S
(
V(t)\Kπ(t); t

)
,

we propose Algorithm 5 based on [229, Algorithm A] to greedily optimize (6.8) in every day t. Denote

the optimum solution of (6.8) as OPT. As proved in [229], on every day t, Algorithm 5 attains a

solution, denoted by K̃π(t), such that
(
V(t)\K̃π(t); t

)
≤
(
1 + ε(t)

)
· OPT, i.e., the solution K̃π(t)

is an ε(t)-approximation of the optimum solution. Here, on day t, the constant ε(t), which is the

steepness of the set function S(·; t) as described in [229], can be calculated as follows, ε(t) = ε′

4(1−ε′)

and ε′ = maxa∈V(t)
S(V(t);t)−S(V(t)\{a};t)−S({a};t)

S(V(t);t)−S(V(t)\{a};t) .

In Algorithm 5, on every day t, in every step, we choose the node that provides the minimum

increment on S(·; t) based on the results in the previous step, and then remove the node from the

current node set. Algorithm 5 is stopped when Kπ(t) nodes have been chosen. The complexity of

this algorithm is discussed in Appendix E.3.

Algorithm 5 Greedy Algorithm
Step 0: On day t, input {vi(t)}i∈V(t), set A0 = V(t).
repeat
Step i: Let Ai = Ai−1\{ai}, where

ai = arg min
a∈Ai−1

S
(
{a} ∪ {a1, · · · , ai−1}; t

)
.

until i = N(t)− |Kπ(t)|, and return Kπ(t) = Ai.

6.3. Exploitation and Exploration

In Section 6.2.1, we proposed a near-optimal greedy algorithm to sequentially (in time) select the

nodes to test. However, Algorithm 5 has two shortcomings. (i) The computation is costly when

N and/or T are large (see Appendix E.3). (ii) The objective function S
(
V(t)\Kπ(t)

)
is dependent

on {vi(t)}i∈V(t) which is unknown, even though the network and the process are stochastically fully

given (see Section 6.2). This is because the set of infected nodes is unknown and time-evolving.

To overcome the first shortcoming, we propose a simpler reward maximization policy by minimizing
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an upper bound on the objective function in (6.8). To overcome the second shortcoming, we estimate

{vi(t)}i∈V(t) using the history of test observations {Y (τ)}tτ=0 (as presented in Section 6.4). we refer

to the estimates as {ui(t)}i∈V(t). Both the greedy policy and its reward-based variant that we will

propose in this section thus need to perform decision-making based on the estimates {ui(t)}i∈V(t)

and we refer to them as “exploitation” policies.

It now becomes clear that testing has two roles: to find the infected in order to isolate them

and contain the spread, and to provide better estimates of {vi(t)}i∈V(t). This leads to interesting

tradeoffs between exploitation and exploration as we will discuss next. Under exploitation policies,

we test nodes deterministically based on a function of {vi(t)}i∈V(t), (which is called “reward”, and

will be defined later); while under exploration policies, nodes are tested according to a probabilistic

framework (based on rewards of all nodes).

To simplify the decision-making into reward maximization, we first derive an upper bound on

S
(
V(t)\Kπ(t); t

)
. Define

ri(t) = S
(
{i}; t

)
. (6.9)

Using the supermodularity of the function S(·), we prove the following lemma in Appendix E.4.

Lemma 14. S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
−
∑

i∈Kπ(t) ri(t).

Remark 27. Recall that S(·; t) is a supermodular function, then the amount of newly infectious

nodes incurred by the set Kπ(t), S(Kπ(t); t), is larger than the sum of the amount of newly infec-

tious nodes by every individual node in Kπ(t), i.e.,
∑

i∈Kπ(t) ri(t). Thus, S
(
V(t)\Kπ(t); t

)
is upper

bounded by S
(
V(t); t

)
−
∑

i∈Kπ(t) ri(t).

We propose to minimize the upper bound in Lemma 14 instead of S
(
V(t)\Kπ(t); t

)
. Since V(t) is

known and S
(
V(t); t

)
is hence a constant, the problem reduces to solving:

max
|Kπ(t)|≤B(t)

∑
i∈Kπ(t)

ri(t). (6.10)
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Given probabilities {vi(t)}i∈V(t), the solution to (6.10) is to pick the nodes associated with the B(t)

largest values ri(t). We thus refer to ri(t) as the reward of selecting node i.

Let {ui(t)}i∈V(t) be an estimate for {vi(t)}i∈V(t) found by estimating the conditional probability

of the state of node i given the history of observations {Y (τ)}t−1
τ=0. Our proposed reward-based

Exploitation (RbEx) policy follows the same idea of selecting the nodes with the highest rewards.

Note that {vi(t)}i∈V(t) is unknown to all nodes. Instead of using the true probabilities {vi(t)}i∈V(t),

we consider the estimates of it which we sequentially update by computing the prior probabil-

ities {ui(t)}i∈V(t) and the posterior probabilities {wi(t)}i∈V(t). In particular, {ui(0)}i∈V(0) and

{wi(0)}i∈V(0) are the prior probabilities and the posterior probabilities on the initial day, respec-

tively. Hence, we calculate the estimate of rewards, denoted by r̂i(t), by replacing {vi(t)}i∈V(t) with

{ui(t)}i∈V(t) in (6.6) and (6.9).

Algorithm 6 Reward-based Exploitation (RbEx) Policy

Input {wi(0)}i∈V(t), {ui(0)}i∈V(0), Y (0), and t = 0.
Repeat for t = 1, 2, · · · , T − 1.
Step 1: Calculate {r̂i(t)}i∈V(t) based on {ui(t)}i∈V(t) and (6.9).
Step 2: Re-arrange the sequence {r̂i(t)}i∈V(t) in descending order, and test the first K(t) nodes.
Get the new observations Y (t).
Step 3: Based on Y (t), update {ui(t+1)}i∈V(t+1) by Algorithm 8 (Step 0 ∼ Step 2) in Section ??.

The shortcoming of Algorithm 6 is that it targets maximizing the estimated sum rewards, even

though the estimates may be inaccurate. In this case, testing is heavily biased towards the history

of testing and it does not provide opportunities for getting better estimates of the rewards. For

example, consider a network with several clusters. If one positive node is known by Algorithm 6,

then it may get stuck in that cluster and fail to locate more positives in other clusters.

In Section 6.4.3, we will prove, in a line network, that the exploitation policy described in Algo-

rithm 6 can be improved by a constant factor (in terms of the resulting cumulative infections) if a

simple form of exploration is incorporated.

We next propose an exploration policy. Our proposed policy is probabilistic in the sense that the
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nodes are randomly tested with probabilities that are proportional to their corresponding estimated

rewards. This approach has similarities and differences to Thompson sampling and more generally

posterior sampling. The similarity lies in the probabilistic nature of testing using posterior probabil-

ities. The difference is that in our setting decision-making depends on the distributions of decision

variables, but not samples of the decision variables.

More specifically, at time t, node i is tested with probability min{1, B(t)r̂i(t)∑
j∈V(t) r̂j(t)

}, which depends on

the budget B(t). Note that each node is tested with probability at most 1; so if B(t)r̂i(t)∑
j∈V(t) r̂j(t)

> 1 for

some node i, then we would not fully utilize the budget. The unused budget is thus

c(t) =
∑
i∈V(t)

( B(t)r̂i(t)∑
j∈V(t) r̂j(t)

− 1
)+ (6.11)

and can be used for further testing22. Algorithm 7 outlines our proposed Reward-based Exploitation-

Exploration (REEr) policy.

Algorithm 7 Reward-based Exploitation-Exploration (REEr) Policy

Input {wi(0)}i∈V(t), {ui(0)}i∈V(0), Y (0), and t = 0.
Repeat for t = 1, 2, · · · , T − 1
Step 1: Calculate {r̂i(t)}i∈V(t) based on {ui(t)}i∈V(t) and (6.9).
Step 2: Test node i with probability min{1, B(t)r̂i(t)∑

j∈V(t) r̂j(t)
}. After that, randomly select c(t)(

defined in (6.11)
)
further nodes to test (see Footnote 22). Get the new observations Y (t).

Step 3: Based on Y (t), update {ui(t+1)}i∈V(t+1) by Algorithm 8 (Step 0 ∼ Step 2) in Section 6.4.

6.4. Message-Passing Framework

As discussed in Section 6.3, the probabilities {vi(t)}i are unknown. In this section, we develop a

message-passing framework to sequentially estimate {vi(t)}i based on the network observations and

the dynamics of the spread process. We refer to these estimates as {ui(t)}i.

When node i is tested on the day t, an observation Yi(t) is provided about its state. Knowing the

state of node i provides two types of information: (i) it provides information about the state of the

neighboring nodes in future time slots t+ 1, t+ 2, . . . (because of the evolution of the spread in time
22Note that c(t) is not always an integer. Instead of c(t), we use Int

(
c(t)
)
with probability |Int

(
c(t)
)
− c(t)| where

Int(·) ∈ {b·c, d·e}.
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and on the network), and (ii) it also provides information about the past of the spread, meaning

that we can infer about the state of the (unobserved) nodes at previous time slots. For example, if

node i tested positive in time t, we would know that (i) its neighbors are more likely to be infected

in time t+ 1 and (ii) some of its neighbors must have been infected in a previous time for node i to

be infected now. This forms the basis for our backward-forward message-passing framework.

Given the spread model of Section 6.2, we first describe the forward propagation of belief. Suppose

that at time t, the probability vector vi(t) is given for all i. The probability vector vi(t+ 1) can be

computed as follows (see Appendix E.5):

vi(t+ 1) = vi(t)× Pi
(
{vj(t)}j∈∂+

i (t)

)
(6.12)

where Pi
(
{vj(t)}j∈∂+

i (t)

)
is a local transition probability matrix given in Appendix E.5.

Recall that Y (t) denotes the collection of network observations on day t. The history of observations

is then denoted by {Y (τ)}t−1
τ=1. Based on these observations, we wish to find an estimate of the

probability vector vi(t) for each i ∈ V(t). We denote this estimate by ui(t) = (u
(i)
x (t), x ∈ X ) and

refer to it, in this section, as the prior probability of node i in time t. We further define the posterior

probability wi(t) = (w
(i)
x (t), x ∈ X ) of node i in time t (after obtaining new observations Y (t)). In

particular,

u(i)
x (t) = Pr

(
σi(t) = x|{Y (τ)}t−1

τ=1

)
w(i)
x (t) = Pr

(
σi(t) = x|{Y (τ)}tτ=1

)
.

Here, the prior probability is defined at the beginning of every day, and the posterior probability is

defined at the end of every day. Conditioning all probabilities in (6.12) on {Y (τ)}tτ=1, we obtain

the following forward-update rule (see Appendix E.6)

ui(t+ 1) = wi(t)× Pi
(
{wj(t)}j∈∂+

i (t)

)
. (6.13)
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Remark 28. Following (6.13), we need to utilize the observations Y (t) and the underlying depen-

dency among nodes’ states to update the posterior probabilities {wi(t)}i, and consequently update

{ui(t + 1)}i based on the forward-update rule (6.13). This is however non-trivial. A Naive ap-

proach would be to locally incorporate node i’s observation Yi(t) into wi(t) and obtain ui(t + 1)

using (6.13). This approach, however, does not fully exploit the observations and it disregards the

dependency among nodes’ states, as caused by the nature of the spread (An example is provided in

Appendix E.8).

6.4.1. Backward Propagation of Belief

To capture the dependency of nodes’ states and thus best utilize the observations, we proceed as

follows. First, denote

ei(t− 1) = (e(i)
x (t− 1), x ∈ X )

e(i)
x (t− 1) = Pr

(
σi(t− 1) = x|{Y (τ)}tτ=1

)
.

Vector ei(t − 1) is the posterior probability of node i at time t − 1, after obtaining the history of

observations up to and including time t. By computing ei(t − 1), we are effectively correcting our

belief on the state of the nodes in the previous time slot by inference based on the observations

acquired at time t. This constitutes the backward step of our framework and we will expand on it

shortly. The backward step can be repeated to correct our belief also in times t− 2, t− 3, etc. For

clarity of presentation and tractability of our analysis and experiments, we truncate the backward

step at time t− 1 and present assumptions under which this truncation is theoretically justifiable.

Considering larger truncation windows is straightforward but out of the scope of this paper.

Once our belief about nodes’ states is updated in prior time slots (e.g., ei(t− 1) is obtained), it is

propagated forward in time for prediction and to provide a more accurate estimate of the nodes’

posterior and prior probabilities. More specifically, consider (6.12) written for time t (rather than

t + 1) and condition all probabilities on {Y (τ)}tτ=1. We obtain the following update rule (see
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Appendix E.6):

wi(t) = ei(t− 1)× P̃i
(
{ej(t− 1)}j∈∂+

i (t−1)

)
(6.14)

where P̃i
(
{ej(t − 1)}j∈∂+

i (t−1)

)
is given in Appendix E.6. Note that the local transition matrix in

(6.14) is not the same as (6.13). This is because “future" observations were available in P̃i
(
{ej(t−

1)}j∈∂+
i (t−1)

)
. The probability vectors {ei(t − 1)}i provide better estimates for {wi(t)}i through

(6.14) and the prior probabilities {ui(t+1)}i are then computed using (6.13) to be used for decision

making in time t+ 1. The block diagram in Fig. 6.3 depicts the high-level idea of our framework. It

is worth noting that Pi
(
{wj(t)}j∈∂+

i (t)

)
in (6.13) and P̃i

(
{ej(t− 1)}j∈∂+

i (t−1)

)
in (6.14) both depend

on the observations, {Y (τ)}tτ=1.

We next discuss how ej(t− 1) can be computed, starting with some notations. Denote by

ζi(t) = σi(t)|{Y (τ)}tτ=1
, θj(t) = σi(t)|{Y (τ)}t−1

τ=1
, (6.15)

the state of the nodes in the posterior probability spaces conditioned on the observations {Y (τ)}tτ=1

and {Y (τ)}t−1
τ=1, respectively. We further define Ψi(t) to be the set of those neighbors of node i at

time t− 1, including node i, who are observed/tested at time t. This set consists of all nodes whose

posterior probabilities will be updated at time t − 1 (given a new observation Yi(t)). The set of

all neighbors (except node i) of the nodes in Ψi(t) then defines Φi(t). The set Φi(t) consists of all

nodes whose posterior probabilities at time t are updated by the observation Yi(t). More precisely,

we have

Ψi(t) = O(t) ∩ ∂+
i (t− 1),

Φi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ Ψi(t)}\{i},

Θi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ O(t)}\{i}

where O(t) is the set of observed nodes at time t (see Figure 6.2). In Appendix E.7, we show
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Figure 6.2: An example of Ψi(t), Φi(t) and Θi(t). Node i is marked in red, and its neighborhood
∂+
i (t − 1) is shown by the red contour. Suppose that the gray nodes are tested on the day t − 1,

then Ψi(t) is the set of nodes within the green contour, and Φi(t) consists of the nodes in the purple
contour. Finally, nodes in Θi(t) are marked with a bold black border

.

e(i)
x (t− 1)=

Pr
(
Y (t)|ζi(t−1)=x

)
w

(i)
x (t− 1)

Pr
(
Y (t)

) . (6.16)

It suffices to find Pr
(
Y (t)|ζi(t−1) = x

)
. The denominator Pr

(
Y (t)

)
is then found by normalization

of the enumerator in (6.16). Let {xj}j∈O(t) be a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) be

a realization of {ζl(t − 1)}l∈Θi(t). We prove the following in Appendix E.7 under a simplifying

truncation assumption (see Assumption 9 in Appendix E.7) where the backward step is truncated

in time t− 1:

Pr
(
Y (t)|ζi(t− 1) = x

)
= Pr

(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
{xj}j∈Ψi(t)

∏
j∈Ψi(t)

Pr
(
Yj(t)|θj(t)

)
×

∑
{yl}l∈Φi(t)

∏
j∈Ψi(t)

Pr
(
xj |{yl}l∈∂+

j (t−1)\{i}, x
)
×

∏
l∈{Φi(t)}

w(i)
yl

(t− 1).

(6.17)

We finally present our Backward-Forward Algorithm to sequentially compute estimates {ui(t)}i in

Algorithm 8. The process of Algorithm 8 is given in Fig 6.3, and we also give a simple example to

show the process of Algorithm 8 in Appendix E.8.

6.4.2. Necessity of Backward Updating

Now we provide an example that illustrates the necessity of backward updating.
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Figure 6.3: The process of Algorithm 8. One example of a complete process is given in unshaded
blocks. Recall that ui(τ), wi(τ), and ei(τ), where τ ∈ {t − 1, t, t + 1}, are the prior probabilities,
the posterior probabilities, and the updated posterior probabilities, respectively.

Algorithm 8 Backward-Forward Algorithm
Input Y (0), {ei(0)}i∈V(0), {wi(0)}i∈V(0), {ui(0)}i∈V(0).
Repeat for t = 1, 2, · · · , T − 1
Step 0: Based on Y(t), get V(t) from V(t− 1).
Step 1: Backward step. Update ei(t− 1) by (6.16), (6.17), and then compute wi(t) by (6.14).
Step 2: Forward step. Compute ui(t+ 1) by (6.13).

Figure 6.4: The line network in Example 3.

Example 3. Consider a line network with the node set V = {1, 2, . . . , N} and the edge set E =

{(i, i+ 1), 1 ≤ i ≤ N − 1} (see Figure 6.4). On the initial day, we assume that each node is infected

independently with probability 1/N . Let β = 1, λ = 0, γ = 023, and B(t) = 1. We further assume

that there is no isolation when a positive node is tested.

Based on Example 3, we show that the naive approach of Remark 28 (i.e., forward-only updat-

ing) will cause the estimated probabilities to never converge to the true probabilities of infection.

Nonetheless, if we use the Backward-Forward Algorithm 8, the estimated probabilities converge to

the true probabilities after a certain number of steps. Formally, we prove the following result in

Appendix E.10.
23Here, λ = 0 implies there is no latent state, and γ = 0 implies that nodes never recover.
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Theorem 22. For any testing policy that sequentially computes {ui(t)}i based on (6.13) (see Re-

mark 28), with probability (approximately) 1
e , we have

∑N
i=1 ‖vi(t) − ui(t)‖

t→∞→ Θ(N), for large

N 24. On the other hand, there exists a testing policy that sequentially updates {ui(t)}i based on

Algorithm 8 and attains
∑N

i=1 ‖vi(t)− ui(t)‖ = 0, t ≥ 2N.

Roadmap of proof: Consider a simple case where every node is susceptible. Since each node is

infected with probability 1/N , then the case occurs with probability ' 1/e.

Under the case above, consider any testing policy based on the algorithm in Remark 28. If a node is

tested on the day t, then the policy “clears” the tested node. Since the updating rule of the algorithm

can not go back to the information on the day t − 1, then it can not “clear” any neighbors of the

tested node and its probability of infection updates to a non-zero value the next day. Furthermore,

we show that almost all nodes have a significantly large probability of infection when the time horizon

is sufficiently large, hence
∑N

i=1 ‖vi(t)− ui(t)‖
t→∞→ Θ(N).

On the other hand, we can propose a specific testing policy. Note that there is no infection, if

Algorithm 8 is used to update probabilities, then it can reveal the states of all nodes under the

specific testing policy after at most 2N days. So we have
∑N

i=1 ‖vi(t)− ui(t)‖ = 0, t ≥ 2N.

In Theorem 22, we illustrate the necessity of backward updating when testing is limited. In essence,

we want to “clear” the graph and confirm that there are no infections. If the number of tests is

limited, we have mathematically shown that no algorithm can correctly estimate the nodes’ infection

probabilities if it does not use the backward (inference) step. On the contrary, there is an algorithm

that uses the backward step along with the forward step and the estimates that it provides for the

nodes’ infection probabilities converge to the true probabilities of the nodes after some finite steps.

Even though the considered graph is simple but the phenomena it captures are general.

As discussed in Theorem 22, backward updating is necessary. However, backward updating can be

computationally expensive in large dense graphs. To trade off the impact of backward updating and
24Theorem 22 holds for all kinds of noem due to the equivalence of norms. In addition, the convergence is topological

convergence.
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the reduction of computation complexity, we propose an α-linking backward updating algorithm in

Appendix E.11, where Algorithm 8 is applied on a random subgraph with fewer edges.

6.4.3. Necessity of Exploration

Note that in reality we have no information for {vi(t)}i, and only have the estimates {ui(t)}i.

One may wonder if exploitation based on wrong initial estimated probability vectors, i.e., {ui(0)}i,

misleads decision-making by providing poorer and poorer estimates of the probabilities of infection.

If so, exploration may be necessary.

Example 4. Consider V = {1, 2, . . . , N} and edges E = {(i, i+ 1), 1 ≤ i ≤ N − 1} (see Figure 6.4).

Let N � 10, β = 1, λ = 0, γ = 0, and B(t) = 10. Suppose that on the initial day, node 1 is

infected and all other nodes are susceptible. Consider a wrong initial estimate: w(i)
I (0) = u

(i)
I (0) = 0

if i ≤ 9N
10 , and w

(i)
I (0) = u

(i)
I (0) = 10ε

N otherwise, where ε > 0. With this initial belief, we have∑N
i=1 ‖wi(0)− vi(0)‖ = O(1 + ε).

Different from Example 3, here we consider the isolation of nodes that tested positive. In Example 4,

suppose that a specific exploration policy is applied: 1 (out of 10) test is done randomly, and the

other 9 tests are done following exploitation. Now, in Appendix E.12, we show that under the RbEx

policy, the cumulative infection is at least aN for a constant a, while under the exploration policy

defined above, the cumulative infection is at most bN with very high probability, and the ratio a/b

can be any constant for a large enough N . More formally, we have the following theorem. Let p0

be a large probability and consider a large time horizon T . Denote the cumulative infections under

the RbEx policy by CRbEx(T ) and under the specific exploration policy defined above by Cexp(T ).

We prove the necessity of exploration in the following Theorem.

Theorem 23. With probability p0 ≥ 99
100 ,

CRbEx(T )
Cexp(T ) ≥ c(N, p0), where c(N, p0) is a constant only

depending on N and p0.

Roadmap of proof: Under the RbEx policy, we test nodes based on their predicted probabilities.

Since the nodes that are located towards the end of the line (right side in Fig. 6.4) have non-zero

probabilities, they are tested first while the disease spreads on the other end of the network (left side
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in Fig. 6.4). Mathematically, suppose that for the first time, an infectious node is tested at day

t = aN , then there are at least min{aN,N} infectious nodes before the spread can be contained.

Under the specific exploration policy described above, consider the event that, for the first time, an

infectious node is explored on the day t = b′N (b′ < a). We argue that with probability p0, the

exploration policy catches at least two new infections at each step after t = b′N . After 2t, the

algorithm catches all the infections, and we have at most 2b′N infections. Let b = 2b′. This is an

improvement by a factor of at least a
b in comparison to the RbEx strategy. Factor a

b depends on the

values of N and p0.

In Theorem 23, we show the necessity of exploration when our initial belief is slightly wrong,

i.e., it is slightly biased toward the other end of the network (In general, this could be due to

a wrong belief, prior test results, etc). We have formally proved that when the testing capacity

is limited, exploration can significantly improve the cumulative infections, i.e., contain the spread.

This motivates the design of exploration policies. Even though the setting is simple, the phenomena

it captures are much more general.

6.5. Numerical Results

6.5.1. Overview

In this section, we use simulations to study the performance of the proposed exploitation and ex-

ploration policies for various synthetic and real-data networks. Towards this end, we define some

metrics that quantify how different metrics perform and key network parameters and attributes that

determine the values of these metrics and thereby how exploitation and exploration compare. We

also identify benchmark policies that represent the extreme ends of the tradeoff between exploration

and exploitation to compare with the policies we propose and assess the performance enhancements

brought about by judicious combinations of exploration and exploitation. Through our experiments,

we aim to answer two main questions for various synthetic and real-data networks: (i) Can explo-

ration policies do better than exploitation policies, and if so, when would that be the case? (ii)

What parameters would affect the performance of exploration and exploitation policies? These are
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important questions to shed light on the role of exploration. These questions are particularly raised

by Theorem 23 in which we prove that exploration can significantly outperform exploitation in some

(stylized) networks. We design the experiments in order to shed light on the above questions and

to understand the extent of the necessity of exploration in different network models and scenarios.

Network parameters We consider the following parameters: (i) The unregulated delay ` which

is the time from the initial start of the spread to the first time testing and intervention starts; (ii)

The (global) clustering coefficient [230, Chapter 3], denoted by γc, which is defined as a measure of

the degree to which nodes in a graph tend to cluster together; (iii) The path-length, denoted by Lp,

which measures the average shortest distance between every possible pair of nodes. We consider

attributes such as the initialization of the process, and the lack of knowledge about {vi(t)}i.

Performance metrics We consider the expected number of infected nodes in a time horizon [0, T ]

as the performance measure for various policies. Let C0(T ) be the number of infected nodes if there

is no testing and isolation, CRbEx(T ), CREEr(T ) be the corresponding numbers respectively for the

RbEx policy (Algorithm 6) and the REEr policy (Algorithm 7). We consider a ratio between the

expectations of these:

Ratio =
E[CRbEx(T )]− E[CREEr(T )]

E[C0(T )]
. (6.18)

We define the estimation error Errπ(t) towards capturing the impact of the lack of knowledge about

{vi(t)}i.

Errπ(t) =
1

N(t)

∑
j∈G(t)

||v(t)− u(t)||22. (6.19)

We consider the difference between the estimation errors of RbEx and REEr policies: ∆Err =

ErrRbEx(T )− ErrREEr(T ).

Benchmark policies We will compare the proposed policies with 3 benchmark policies. (i)

(Forward) Contact Tracing: we tested every day the nodes who have infectious neighbors (in a

forward manner), denoted by candidate nodes. Only some candidate nodes are selected randomly
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due to testing resources being limited. Note that only exploitation is utilized under this benchmark.

(ii) Random Testing: Every day, we randomly select nodes to test. Typical testing policies that

could come out of SIR optimal control formulations for our problem would naturally reduce to

random testing as they treat all nodes to be statistically identical and ignore the impact of network

topology. One can interpret that random testing implements exploration to its full extent. (iii)

Contact Tracing with Active Case Finding: A small portion of (for example, 5%) testing budget

is utilized for active case finding [135]. This portion of the testing budget is used to test nodes

by Random Testing. The remaining budget is utilized for forward contact tracing. (iv) Logistic

Regression: We use ideas presented in [148], where simple classifiers were proposed based on the

features of real data. In our setting, we choose the classifier to be based on logistic regression, and

we define the feature of node i as Xi(t) = [1, ni(t) + ε]T . Here, ni(t) is the number of quarantined

neighbors node i has contacted before and including day t, and ε 6= 0 is a superparameter aiming

to avoid the case where ni(t) = 0. In simulations, we set ε = 0.1. Let the observation Yi(t) be

the testing result of node i. In particular, if node i is not tested on day t, then we do not collect

the data (Xi(t), Yi(t)). Thus, the probability of node i being infectious is defined as the Sigmoid

function

1

1 + exp(−Xi(t) · wT )
,

where w is the parameter that should be learned.

Simulation Setting We consider a process as described in Section 6.2 with n0 randomly located

initial infected nodes. The process evolved without any testing/intervention for ` days and we refer

to ` as the unregulated delay. After that, one of the (initial) infectious nodes, denoted by node i0,

is (randomly) provided to the policies. Subsequently, the initial estimated probability vector is set

to ui0(`) = (1, 0, 0, 0), and ui(`) = (0, 0, 0, 1) when i 6= i0. We consider the budget to be equal to

the expected number of infected nodes at time t, i.e., B(t) =
∑N(t)

j=1 v
(j)
I (t).

We choose model parameters considering the particular application of COVID-19 spread. In partic-

ular, 1) the mean latency period is 1/λ = 1 or 2 days [225]; 2) the mean duration in the infectious
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state (I) is 1/γ = 7 ∼ 14 days [225, 226, 227]; 3) we choose the transmission rate β in a specific

network such that after a long time horizon, if no testing and isolation policies were applied, then

around 60 ∼ 90 percent individuals are infected. We did not consider the case where 100 percent

of individuals are infected because, given the recovery rate (and the topology), the spread may not

reach every node.

We consider both synthetic networks such as Watts-Strogatz (WS) networks [231], Scale-free (SF)

networks [232], Stochastic Block Models (SBM) [233] and a variant of it (V-SBM), as well as real-

data networks. Descriptions and further results for the synthetic networks and real networks are

presented in Appendix E.13.

Watts-Strogatz Networks. We consider a network WS(N, d, δ) with N nodes, degree d, and

rewiring probability δ. The transmission probability of the spread is set to β = 0.4 and the number

of initial seeds is n0 = 3.

Scale-free Networks. We consider a network SF(N,α) with N nodes, and the fraction of nodes

with degree k follows a power law k−α, where α = 2.1, 2.3, 2.5, 2.7, 2.9. The transmission probability

of the spread is set to β = 0.5 and the number of initial seeds is n0 = 3.

Stochastic Block Models. The SBM is a generative model for random graphs. The graph

is divided into several communities, and subsets of nodes are characterized by being connected

with particular edge densities. The intra-connection probability is p1, and the inter-connection

probability is p2. We denote the SBM as SBM(N,M, p1, p2)25. The transmission probability of the

spread is set to β = 0.04 and the number of initial seeds is n0 = 3. The construction of SBM is

given in Appendix E.13.1.

A Variant of Stochastic Block Models. Different from SBM, we only allow nodes in cluster i

to connect to nodes in successive clusters (the neighbor clusters). Denote a variant of SBM as

V-SBM(N,M, p1, p2). The transmission probability of the spread is set to β = 0.04 and the number

of initial seeds is n0 = 3. The construction of V-SBM is given in Appendix E.13.1.
25Here, we assume that M is an exact divisor of N .
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Real-data Network I. We consider a contact network of university students in the Copenhagen

Networks Study [234]. The network is built based on the proximity between participating students

recorded by smartphones, at 5 minute resolution. According to the definition of close contact

by [227], we only used proximity events between individuals that lasted more than 15 minutes to

construct the daily contact network. The contact network has 672 individuals spanning 28 days.

To guarantee a long time horizon, we replicate the contact network 4 times so that the time horizon

is 112 days. We set β = 0.05 and n0 = 5 to have a realistic simulation of the Covid-19 spread.

Note that the network is relatively dense, so we choose a relatively small value of β to avoid the

unrealistic case in which the disease spreads very fast (see Figure 6.11 (left)).

Real-data Network II. We consider a publicly available dataset on human social interactions

collected specifically for modeling infectious disease dynamics [235, 236, 237]. The data set consists

of pairwise distances between users of the BBC Pandemic Haslemere app over time. The contact

network has 469 individuals spanning 576 days. Since the network is very sparse, then we compress

contacts among individuals during 4 successive days to one day. Then, we have 469 individuals

spanning 144 days. We set β = 0.95 and n0 = 30 to have a realistic simulation of the Covid-19

spread. Note that the network is relatively sparse, so we choose a relatively large value of β to avoid

the unrealistic case in which the disease spreads very slowly (see Figure 6.11 (left)).

6.5.2. Simulation Results in Synthetic Networks

In this section, we compare the performances of our proposed policies and the benchmarks (defined

in Section 6.5.1) in synthetic networks. We start with some specific networks and parameters for

this purpose (see Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8). The figures reveal that our

proposed policies, i.e., the RbEx and REEr policies, outperform the benchmarks. In particular, in

Figure 6.5 and Figure 6.6 (i.e., the WS and SF networks), the REEr policy outperforms the RbEx

policy, and the REEr policy provides a more accurate estimation for {vi(t)}i. In Figure 6.7 and

Figure 6.8 (i.e., the SBM and V-SBM networks), the RbEx policy outperforms the REEr policy,

and the RbEx policy provides a more accurate estimation for {vi(t)}i. In addition, in Figure 6.5,

we show that Algorithm 5 outperforms the RbEx policy but performs worse than the REEr policy

(recall that the computation time of Algorithm 5 is high, we therefore only plot the performance of
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Figure 6.5: Performances and estimation errors of different policies in WS(300, 4, 0.03) when ` = 3.

Algorithm 5 in Figure 6.5 as an example). This implies that without exploration, exploitation in a

greedy manner can not perform well in WS networks.

From the discussions above, the advantages of exploration in distinct settings (different network

topologies with variant parameters) are different. To investigate the advantages of exploration in

distinct settings, it suffices to show how the main parameters affect the exploration. In this work,

we consider three main parameters which are defined in Section 6.5.1, i.e., the unregulated delay `,

the global clustering coefficient γc, and the path-length Lp. Detailed discussions are later given in

Section 6.5.2.

Impact of Network Parameters

In this subsection, we consider the impact of network parameters on the tradeoff between exploration

and exploitation.

Impact of `. We first investigate the impact of the unregulated delay, `. Specifically, from

Table 6.2, Table 6.3, Table 6.4, and Table 6.5, as ` increases, so does Ratio and ∆Err, implying that

exploration becomes more effective. With an increase in `, the infection continues in the network

for longer, there is a greater number of infectious nodes in the network and they are scattered
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Figure 6.6: Performances and estimation errors of different policies in SF(300, 2.5) when ` = 3.
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Figure 6.7: Performances and estimation errors of different policies in SBM(300, 10, .2736, .02)
when ` = 5.
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Figure 6.8: Performances and estimation errors of different policies in VSBM(300, 10, .4184, .02)
when ` = 5.

throughout the network, thus exploration is better suited to locate them. Thus, the REEr policy

can contain the spread of the disease faster.

In particular, the REEr policy is always better in WS networks. This is because exploitation may

confine the tests in neighborhoods of some infected nodes. While in the SBM networks, the RbEx

policy always outperforms the REEr policy. In both the SF and V-SBM networks, the RbEx policy

is better when ` is small, and the REEr policy is better when ` is large. One interesting observation

is that in the V-SBM networks, the REEr policy performs better when ` is large (= 11, 13), but the

corresponding estimation errors are larger than those in the RbEx policy. In this specific network

topology, it appears that smaller estimation error does not always correspond to better cumulative

infections. One potential reason is that the REEr policy is sensitive to ` in this topology, i.e., we can

achieve smaller cumulative infections under the REEr policy even if the estimation error is larger.

WS, ` 3 5 7 9 11

Ratio 0.097 0.128 0.177 0.207 0.297

∆Err 0.553 0.814 1.092 1.197 1.449

Table 6.2: Role of the unregulated delay ` in WS networks when δ = 0.03.

159



SF, ` 3 5 7 9 11

Ratio −0.0009 0.0026 0.0033 0.0042 0.0059

∆Err −0.0014 0.0237 0.0334 0.0434 0.1212

Table 6.3: Role of the unregulated delay ` in SF networks when α = 2.1.

SBM, ` 5 7 9 11 13

Ratio −0.092 −0.079 −0.042 −0.035 −0.025

∆Err −0.026 −0.015 −0.010 −0.009 −0.009

Table 6.4: Role of the unregulated delay ` in SBMs when (p1, p2) = (.274, .02).

V-SBM, ` 5 7 9 11 13

Ratio −0.022 −0.016 −0.007 0.011 0.019

∆Err −0.081 −0.066 −0.046 −0.033 −0.025

Table 6.5: Role of the unregulated delay ` in V-SBMs when (p1, p2) = (.418, .02).

Impact of γc and Lp. Then, we investigate the impact of the global clustering coefficient, i.e., γc,

and the average shortest path length, i.e., Lp. In Table 6.6, both γc and Lp decrease as δ increases.

In Table 6.7, γc decreases as α increases. For the SF networks, the graphs are often disconnected,

so we only calculate γc in Table 6.7. In Table 6.8 and Table 6.9, both γc and Lp decrease as p2

increases.

From these tables, as Lp or γc decreases, the benefits of exploration compared to exploitation

decrease as well. This confirms the intuition that exploration is particularly helpful in clustered

networks with larger path lengths where undetected infection can spread without any intervention

as exploitation largely confines the tests in neighborhoods of the infections that were previously de-

tected. This is also supported by the fact that exploration lowers estimation error in such scenarios,

as shown in Table 6.6, Table 6.7, Table 6.8, and Table 6.9. Furthermore, we investigate the role of

γc and Lp individually in Appendix E.13.2.

6.5.3. Simulation Results in Real-data Networks

In this section, we verify our proposed policies in real data networks (Real-data Network I and

Real-data Network II). In Figure 6.9, our proposed policies outperform the baselines, and the RbEx

policy outperforms the REEr policy. In Figure 6.10, the REEr policy can contain the spread and
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WS, δ γc Lp Ratio ∆Err

0 .5 62.876 0.191 1.153

.0075 .489 21.264 0.182 1.423

.015 .473 14.253 0.174 0.991

.0225 .467 12.171 0.126 0.779

.03 .456 10.81 0.097 0.554

Table 6.6: Role of the clustering coefficient and the path length in WS networks when ` = 3.

SF, α γc Ratio ∆Err

2.1 .5017 0.0080 0.0334

2.3 .3374 0.0057 0.0253

2.5 .2348 0.0032 0.0177

2.7 .1496 −0.0019 0.0124

2.9 .0219 −0.0064 0.0081

Table 6.7: Role of the clustering coefficient and the path length in SF networks when ` = 3.

SBM, (p1, p2) γc Lp Ratio ∆Err

(0.274, 0.02) 0.111 2.573 −0.092 −0.026

(0.214, 0.026) 0.075 2.518 −0.103 −0.023

(0.159, 0.032) 0.056 2.492 −0.113 −0.026

(0.102, 0.039) 0.048 2.480 −0.118 −0.023

(0.045, 0.045) 0.043 2.455 −0.124 −0.027

Table 6.8: Role of the clustering coefficient and the path length in SBMs when ` = 5.

V-SBM, (p1, p2) γc Lp Ratio ∆Err

(0.418, 0.020) 0.3557 4.4264 −0.022 −0.081

(0.351, 0.052) 0.2365 3.6584 −0.091 −0.045

(0.284, 0.085) 0.1769 3.307 −0.104 −0.055

(0.217, 0.085) 0.1385 3.1562 −0.112 −0.041

(0.150, 0.0150) 0.1170 3.0563 −0.123 −0.042

Table 6.9: Role of the clustering coefficient and the path length in V-SBMs when ` = 5.

Real-data Network I, ` 5 8 11

Ratio −0.0559 −0.0255 0.009

∆Err −0.061 −0.030 0.035

Table 6.10: Role of the unregulated delay ` in the real-data network I.

Real-data Network II, ` 5 8 11

Ratio 0.0808 0.1039 0.1208

∆Err 0.0317 0.0535 0.0615

Table 6.11: Role of the unregulated delay ` in the real-data network II.
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Figure 6.9: Performances and estimation errors of different policies in the real-data network I when
` = 8.
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Figure 6.11: The average number of edges per node on each day (left). The number of components
on each day (right).

outperform other baselines and RbEx, while the Logistic Regression policies outperform RbEx.

Comparing Figure 6.9 and Figure 6.10, we find that the RbEx policy performs well in Real-data

Network I (better than the REEr policy), but performs not well in Real-data Network II (much worse

than the REEr policy). In Figure 6.11 (left), we calculate the average edges per node every day, and

in Figure 6.11 (right), we calculate the number of components every day. From Figure 6.11 (left),

the Real-data Network I is denser than the Real-data Network II. However, from Figure 6.11 (right),

the Real-data Network II often has more components (subgraphs) than the Real-data Network I.

Thus, exploitation may become confined within some components (subgraphs), and fail to locate

infectious nodes elsewhere, and exploration becomes more effective in presence of a large number of

components. This explains the relative performances of REEr and RBEx in these. Contact tracing

policy employs only exploitation, while active case finding policy uses most of its test budget for

exploitation (and a small amount of the residual test budget for exploration). From Figure 6.9 and

Figure 6.10, the contact tracing and the active case finding policies perform relatively poorly in the

Real-data Network II compared to that in the Real-data Network I; this may again be attributed

to the presence of a large number of components in the former.

As ` increases, as we show in Table 6.10 and Table 6.11 that the benefit of exploitation decreases. In

Table 6.11, because of a large number of components, exploration always outperforms exploitation.

However, in Table 6.10, we observe that exploration outperforms exploitation only for larger values

163



of `. Our results are thus consistent with synthetic networks.

6.6. Conclusions and Future Research

In this chapter, we studied the problem of containing a spreading process (e.g. an infectious disease

such as COVID-19) through sequential testing and isolation. We modeled the spread process by a

compartmental model that evolves in time and stochastically spreads over a given contact network.

Given a daily test budget, we aimed to minimize the cumulative infections. Under mild conditions,

we proved that the problem can be cast as minimizing a supermodular function expressed in terms of

nodes’ probabilities of infection and proposed a greedy testing policy that attains a constant factor

approximation ratio. We subsequently designed a computationally tractable reward-based policy

that preferentially tests nodes that have higher rewards, where the reward of a node is defined as

the expected number of new infections it induces in the next time slot. We showed that this policy

effectively minimizes an upper bound on cumulative infections.

These policies, however, need knowledge about nodes’ infection probabilities which are unknown

and evolving. Thus, they have to be actively learned by testing. We discussed how testing has a dual

role in this problem: (i) identifying the infected nodes and isolating them in order to contain the

spread, and (ii) providing better estimates for the nodes’ infection probabilities. We proved that

this dual role of testing makes decision-making more challenging. In particular, we showed that

reward-based policies that make decisions based on nodes’ estimated infection probabilities can be

arbitrarily sub-optimal while incorporating simple forms of exploration can boost their performance

by a constant factor. Motivated by this finding, we devised exploration policies that probabilistically

test nodes according to their rewards and numerically showed that when (i) the unregulated delay,

(ii) the global clustering coefficient, or (iii) the average shortest path length increase, exploration

becomes more beneficial as it provides better estimates of the nodes’ probabilities of infection.

Given the history of observations, computing nodes’ estimated probabilities of infection is itself

a core challenge in our problem. We developed a message-passing framework to estimate these

probabilities utilizing the observations in the form of test results. This framework passes messages

back and forth in time to iteratively predict the probabilities in the future and correct the errors in
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the estimates in prior time instants. This framework can also be of independent interest.

We showed novel tradeoffs between exploration and exploitation, different from the ones commonly

observed in multi-armed bandit settings: (i) in our setting, the number of arms is time-variant and

actions cannot be repeated; (ii) the tradeoffs in our setting are not due to lack of knowledge about

the network or the process model, but rather due to lack of knowledge about the time-evolving

unknown set of infected nodes.

We now describe directions for future research.

Our framework can be extended to incorporate delay and/or error in test results in a relatively

straightforward manner (an outline of the extension incorporating a delay is given in Appendix E.9),

but generalizing the performance guarantees for the proposed policies in these cases forms a direction

of future research. This includes establishing fundamental lower bounds using genie-aided myopic

policies.

6.6.1. Impact Statements

We have made several assumptions for the purpose of analytical and computational tractability

which do not hold in practice: (1) the infections from different nodes are independent (2) given

the entire history of testing results the states of nodes on the truncation day are independent

(Assumption 9), (3) the symptoms need not be considered in deciding who should be tested and

(4) the public health authority knows the entire network topology and uses it to determine who

should be tested (5) independence of states of nodes (in one step). The first two assumptions were

used to derive the message-passing framework and to prove that the objective function is super-

modular which in turn led to a myopic testing strategy which is also optimal. The first assumption

is reasonable as specific actions of infected individuals, eg, coughing, touching, and spreading the

infection, which is undertaken independently.

We now consider the second assumption, ie, Assumption 9, in which we assume that the nodes’

states ζ(t − g) (in the posterior probability space on the day t − g) are independent. Note that g

is the truncation time for each backward step, that is, once we get the observations Y (t), we do
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the backward step and truncate at time t − g. This assumption does not impose independence on

the state of the nodes, but only in the posterior space at a specific time. That is, in the process

of propagating information back to time t− g, we are assuming that there is no further correlation

between time t− g− 1 and time t− g worthwhile to exploit given observations at time t. Naturally,

as g gets larger and larger, our framework and calculations become more precise, as the impact

of the testing results at time t in inferring about the nodes’ probabilities at time t − g vanishes

as g gets large. But an increase in g significantly increases the computation time. Therefore, for

computational tractability, of the backward update equations, we use g = 1. In principle, the

derivations of the backward update equations can be generalized in a straightforward manner to

g > 1. But designing approximation strategies that ensure computational tractability for larger g

constitutes a direction of future research.

Consider the third assumption. We have not considered symptoms in determining who to test.

But for some infectious diseases, symptoms are a reliable manifestation of the disease (e.g., Ebola).

In principle, our testing framework can be generalized in a straightforward manner to consider

symptoms by introducing additional states in the compartmental model for the evolution of the

disease. But the introduction of additional states significantly increases the computation time, for

example of the forward and backward updates of the probabilities that individuals have the disease,

which renders implementation of our framework challenging. Considering symptoms while retaining

computational tractability constitutes a direction for future research.

Next, consider the fourth assumption. In practice, public health authorities will not typically know

contact networks in their entirety particularly when they are large, for example, as in large cities.

However, small network topologies, for example, contact networks within a community, may be

observed by the public health authority. As a specific example, the Government of China fully

detected contact networks in many communities in Wuhan and tracked paths traversed by every

individual [238]. This tracking may also generate concerns about privacy which is beyond the scope

of this paper. Nonetheless, the technology for learning contact networks in their entirety for small

communities exists and our framework can be utilized for those. Generalizing our framework to
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obtain approximation guarantees when contact networks can only be partially observed constitutes

a direction of future research.

Finally, consider the last assumption. Note that it is a strong assumption and clearly does not hold

in general but it has been resorted to for only one step in the entire framework. Specifically to

obtain Equation (6.5) we have assumed that the state of the nodes are independent. This allows

us to obtain a simple expression in (6.5) in terms of the infection probabilities. We do not use this

independence assumption in the rest of the chapter.
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APPENDIX A

Proofs in Chapter 2

A.1. Sufficiency of Unit Buffer Size

Consider two types of policies: policies with buffer size 1, denoted by π1, and policies with larger

buffer sizes, denoted by π2. To differentiate the two policies and their corresponding queues, we

label the packets inside the queues by new and old. A new packet in a queue refers to the latest

arrival. A packet in a queue is considered old if there is a newer packet in the same queue or if the

packet (or a fresher packet) from that source is already delivered at the receiver. In the following,

we refer to the freshest old packet as the old packet. At a given time slot, denote the new packet

and the old packet of source i by p(i)
new and p(i)

old, respectively. Denote the arrival times of the new

and old packets as t(n)
i and t(o)

i . It is clear that t(n)
i > t

(o)
i . We will show that no matter what policy

π2 does, there is always a policy of type π1 whose resulting age is at least as low as π2 with respect

to every source node.

At time slot t′, suppose policy π2 chooses certain action, then we design policy π1 to follow the

same action with the new packet. In this time slot, under π2 a subset of sources transmit packets.

Denote the index of these sources by I. For the sources which do not transmit packets, the AoI

under both policies will increase by 1. For the sources in I, we have the following two cases:

Case 1. Suppose collision happens in time slot t′. Then, no packet is delivered, and the AoI of

these sources under both policies will increase by 1.

Case 2. If a packet is delivered, which implies the cardinal of I, |I| = 1. Denote the index of this

source by i. Then at the next time slot, the AoI under π1 drops to hπ1
i (t′ + 1) = t′ − t(n)

i + 1, and

the AoI under π2 drops to hπ2
i (t′ + 1) = t′ − t(o)

i + 1 > hπ1
i (t′ + 1). This means that from t′ onward

hπ2
i (t) will be point-wise larger or equal to hπ1

i (t), t > t′.
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A.2. Proof of Proposition 1

Consider any transmission policy and a large time horizon K. Let Li be the number of remaining

time slots after the last packet delivery in source i. The NAAoI defined in (2.3) can be re-written

as follows:

JπK =
1

M2

M∑
i=1

1

K

K∑
k=1

hi(k) =
1

M2

M∑
i=1

1

K

(Ni(K)∑
m=1

Γi(m) +
1

2
L2
i +Di(Ni(K))Li −

1

2
Li

)
,

where Γi(m) was expressed in (2.4). Since Di(m) ≥ 1 for all 1 ≤ m ≤ Ni(K), we can lower bound

Γi(m) by substituting Di(m− 1) = 1 in (2.4). Using similar steps as [13, Eqns. (9) - (14)], we find

Jπ(M) ≥ lim
K→∞

E[
1

2M2

M∑
i=1

K

Ni(K)
+

1

2M
]. (A.1)

Recall that Ni(K) is the total number of packets delivered by source i. In the limit of K → ∞,
Ni(K)
K is the throughput of source i. By the model assumption, in every time slot, at most one

packet is delivered in the system. Therefore,

lim
K→∞

E[

M∑
i=1

Ni(K)

K
] ≤ CRA. (A.2)

Now note that by the Cauchy-Schwarz inequality, we have

lim
K→∞

E[

M∑
i=1

Ni(K)

K
]E[

M∑
i=1

K

Ni(K)
] ≥M2. (A.3)

Thus using (A.2) and (A.3), we find

lim
K→∞

E[
M∑
i=1

K

Ni(K)
] ≥ M2

CRA
. (A.4)

Inserting (A.4) back into (A.1), we obtain

JπM ≥
1

2CRA
+

1

2M
. (A.5)
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A.3. Proof of Proposition 2

Suppose all packets are delivered instantaneously with one time-unit delay and without experiencing

collisions. A lower bound to NAAoI in this scenario constitutes a lower bound to NAAoI in our

setup. Let Xi(m) denote the inter-arrival time between the mth and (m+ 1)st packets. {Xi(m)}m

is a geometric iid sequence. Under the assumption of instantaneous delivery, Ii(m) = Xi(m). It

hence follows from (2.4) that

Γi(m) =

Ti(m)+Xi(m)−1∑
k=Ti(m)

hi(k) =
1

2
Xi(m)2 +

1

2
Xi(m). (A.6)

Thus, similar with [13], the time-average AoI of source i, denoted by Hi, is

E[Hi] = lim
K→∞

1

K

K∑
k=1

hi(k) =
E[X2]

2E[X]
+

1

2
. (A.7)

Since X in (A.7) has a geometric distribution with parameter θ, we find E[Hi] = 2−θ
2θ + 1

2 . Note

that NAAoI can be captured by 1
M2

∑M
i=1Hi and one can hence conclude that

Jπ(M) ≥ 1

Mθ
. (A.8)

A.4. Proof of Proposition 3

First, consider a source node i whose queue is empty. This means that no new packet has arrived at

that transmitter since the last delivery (from that source node) at the receiver; i.e., hi(k) = wi(k)

and hence δi(k) = 0. Such nodes i are thus irrelevant because δj(k) ≥ 0 for all source nodes j.

Now consider nodes with non-empty queues. Among these nodes, di(k) is non-zero if and only if

(λ1, . . . , λM ) is a vector consisting of 0’s except for λi = 1. Hence at most one di(k) can be equal

to 1. Call the corresponding source node `(k). Expression (2.11) is minimized when d`(k)(k) picks

the largest δj(k).
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A.5. Probabilities of idle, deliveries and collisions under Slotted ALOHA

Lemma 15. Consider any stabilized slotted ALOHA scheme. Define G as the expected number

of attempted transmissions in a slot. Then, for M large, the probability of delivering a packet is

(asymptotically) Ge−G, the probability of an idle system is (asymptotically) e−G, and the probability

of collisions is (asymptotically) 1−e−G−Ge−G. In particular, when G = 1, the maximum probability

of delivery is 1/e, the corresponding probabilities of collisions and idle systems are 1− 2/e and 1/e,

respectively.

Proof. The idea of the proof is very similar to [152, Chapter 4]. However, the settings are different:

[152, Chapter 4] considered that packets arrive as a Poisson process (in a continuous-time system)

and the buffer size is infinite, while this proof considers that packets arrive as a Bernoulli process

(in a discrete-time system) and the buffer size is 1. Define the nodes that are not backlogged

as fresh nodes. Each fresh node transmits a packet directly in a slot if it is not empty, and it

generates/receives a packet with probability θ, thus a fresh node transmits a packet with probability

θ. Let Pa
(
i, n(k)

)
be the probability that i fresh nodes transmit a packet in a time slot and let

Ps
(
j, n(k)

)
be the probability that j backlogged nodes transmit. We have:

Pa
(
i, n(k)

)
=

(
M − n(k)

i

)
(1− θ)M−n(k)−iθi (A.9)

Ps
(
j, n(k)

)
=

(
n(k)

j

)
(1− pb(k))n(k)−ipb(k)i. (A.10)

Thus, in slot k, when a packet is delivered, i.e.,
∑M

i=1 di(k) = 1, the probability is

Pr(
M∑
i=1

di(k) = 1) = Pa
(
1, n(k)

)
Ps
(
0, n(k)

)
+ Pa

(
0, n(k)

)
Ps
(
1, n(k)

)
. (A.11)

If the channel does not transmit a packet in a slot, i.e., we have an idle channel,
∑M

i=1 di(k) = 0,

c(k) = 0. The probability of an idle system in slot k is

Pr(
M∑
i=1

di(k) = 0, c(k) = 0) = Pa
(
0, n(k)

)
Ps
(
0, n(k)

)
. (A.12)
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Define the attempt rate G = (M − n(k))θ + n(k)pb(k) as the expected number of attempted

transmissions in a slot. From (A.9) and (A.10), the probability of delivery is

Pr(
M∑
i=1

di(k) = 1) =
(
M − n(k)

)
(1− θ)M−n(k)−1θ(1− pb)n(k) + (1− θ)M−n(k)n(k)(1− pb)n(k)−1pb

and the probability of an idle channel is

Pr(
M∑
i=1

di(k) = 0, c(k) = 0) = (1− θ)M−n(k)(1− pb)n(k).

Note that the valid regime of θ is θM < 1
e , and thus θ, pb are small. Using the approximation

(1− x)−y ≈ exp(−xy) for small x, we find

Pr(

M∑
i=1

di(k) = 1) ≈ Ge−G

Pr(

M∑
i=1

di(k) = 0, c(k) = 0) ≈ e−G

Pr(c(k) = 1) ≈ 1−Ge−G − e−G.

Taking the first derivative of the function Ge−G, we can find the maximum point is 1 for 0 < G ≤ 1.

So the maximum probability of delivery is

Pr(

M∑
i=1

di(k) = 1) ≈ 1/e, (A.13)

correspondingly, we have

Pr(

M∑
i=1

di(k) = 0, c(k) = 0) ≈ 1/e, (A.14)

Pr(c(k) = 1) = 1− 2/e. (A.15)
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A.6. Proof of Theorem 1

The proof is organized into three parts:

Part 1: Preliminaries. In time slot k, denote the time just before the arrival of new packets by k−

and the time just after the arrival of new packets by k+. We hence write δi(k−) = hi(k
−)−wi(k−)

and δi(k
+) = hi(k

+) − wi(k+). Suppose a packet is delivered from the ith source at the end of

time slot k − 1. We then have δi
(
k−
)

= 0. From (2.14), since all nodes have the same arrival

rate and transmission policy, the sequences {hi(k−)}∞k=1, {hi(k+)}∞k=1, {wi(k−)}∞k=1, {wi(k+)}∞k=1,

{δi(k−)}∞k=1, {δi(k+)}∞k=1 are identical random variables across i = 1, 2, · · · ,M , respectively. Recall

that source nodes with δi(k−) = 0 are 0-order nodes and define n0(k−) as the number of 0-order

nodes at time k−.

At the beginning of time slot k, on average, θM new packets arrive at the sources, and θn0(k−)

0-order nodes receive new packets. Suppose source i is a 0-order node and hi(k−) − wi(k−) = 0.

If source i receives new packets, then the source’s AoI changes from wi(k
−) to wi(k+) = 0 and the

destination’s AoI hi(k−) remains the same as hi(k+). Thus,

δi(k
+) = hi(k

+)− wi(k+) = hi(h
+) = hi(k

−) > hi(k
−)− wi(k−) = δi(k

−) = 0,

which implies that if a 0-order source receives a new packet, then it is not a 0-order source at k+.

Fix any large M and denote the maximum throughput of Slotted ALOHA with CSA(M). We know

that limM→∞CSA(M) = e−1. The recursion of the expected number of 0-order nodes is:

E[n0

(
(k + 1)−

)
] = (1− θ)E[n0(k−)] + min(Mθ,CSA(M)) (A.16)

where the second term on the right-hand side is the average number of delivered packets per time

slot. Since we consider a stabilized slotted ALOHA, limk→∞ E[n0(k−)] exists. Denote

n∗0 = lim
k→∞

E[n0(k−)].
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Letting k →∞ on both sides of (A.16), we have

n∗0 = (1− θ)n∗0 + min(Mθ,CSA(M)). (A.17)

Note that

lim
M→∞

min(Mθ,CSA(M)) = lim
M→∞

Mθ = η. (A.18)

From (A.17) and (A.18), we have

lim
M→∞

n∗0
M

= 1. (A.19)

Part 2: Find the expression of NAAoI. Using (2.3), we have

JSA(M) = lim
K→∞

E

[
1

M2

M∑
i=1

1

K

K∑
k=1

hi(k
−)

]
, J1 + J2

where

J1 = lim
K→∞

E

[
1

M2

M∑
i=1

1

K

K∑
k=1

wi(k
−)

]

J2 = lim
K→∞

E

[
1

M2

M∑
i=1

1

K

K∑
k=1

δi(k
−)

]
.

Part 3: Find the limit of NAAoI. First, we consider J1. wi(k−) has a geometric distribution starting

from 1 with parameter θ for all i. Employing the law of large number, we find

J1 =
1

Mθ
. (A.20)

Next, we consider J2 and prove that its limit in large M approaches zero. Note from (2.12) that

δi(k) = 0 if source i is empty in time slot k and δi(k) > 0 if a packet remains in source i in time slot
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k. We first note that δi(k) is upper bounded by hi(k). Let us consider a worse case in which buffer

sizes are infinite. In this case, assuming stationarity26, denote the inter-arrival time and delay of

packets with respect to source i by Xi and Di. Since the Bernoulli arrival process has parameter θ,

we have E[Xi] = 1
θ = M

η . Moreover, E[Di] is approximately bounded by some constant independent

of the number of sources M [239]. Now we observe that for each packet delivery, the expected peak

age at the destination is upper bounded by E[Xi] + E[Di]. We can hence write

E[δi(k)|δi(k) > 0] ≤ E[Xi] + E[Di] (A.21)

which implies that E[δi(k)] is O(M).

Now expand J2:

J2 = lim
K→∞

E[
1

M2

M∑
i=1

1

K

K∑
k=1

δi(k
−)] = lim

K→∞
E[

1

M2

1

K

K∑
k=1

M∑
i=1

δi(k
−)1δi(k−)>0]

= lim
K→∞

1

M2

1

K

K∑
k=1

M∑
i=1

E[δi(k
−)1δi(k−)>0] ≤ lim sup

k→∞

1

M2

M∑
i=1

E[δi(k
−)1δi(k−)>0]

= lim sup
k→∞

1

M2

M∑
i=1

(
Pr(δi(k

−) > 0)E[δi(k
−)|δi(k−) > 0]

)
.

Since for k large enough the conditional expectation E[δi(k
−)|δi(k−) > 0] is O(M), it remains to

prove that in the limit of large M, limk→∞
1
M

∑M
i=1 Pr(δi(k

−) > 0) vanishes. But this holds because

we can write

lim
k→∞

1

M

M∑
i=1

Pr(δi(k
−) > 0) = lim

k→∞
E[

1

M

M∑
i=1

1δi(k−)>0]

= lim
k→∞

E[
1

M
(M − n0(k−))] =

M − n∗0
M

which goes to zero by (A.19).

Finally, we prove that for any scheme, JSA(M) is lower bounded by 1/η. From Proposition 2 (and
26This assumption approximately holds for infinite time horizon T
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letting M →∞), we have

lim
M→∞

JSA(M) ≥ lim
M→∞

1

Mθ
=

1

η
.

Therefore, slotted ALOHA can reach the lower bound when θ ∈ (0, 1
eM ] and is hence optimal.

A.7. Proof of Lemma 1

Before presenting the proof, we state the following straightforward lemma (whose proof is omitted).

Lemma 16. At the beginning of time slot k, before new packets arrive at source i, wi(k−) > 0 and

its probability distribution is

Pr
(
wi(k

−) = j
)

= θ(1− θ)j−1, j = 1, 2, 3, · · · . (A.22)

First, consider m = 0 and suppose source i is a 0-order node. From Lemma 16, we know that

wi(k
−) > 0. Moreover, since δi(k−) = 0, we conclude hi(k−) = wi(k

−) > 0. Once the 0-order node

has a new arrival, wi(k+) = 0 and hi(k+) = hi(k
−), resulting in δi(k+) = hi(k

+) > 0; i.e., the order

of the node increases. In other words, the order of a 0-order node increases once it receives a new

packet. In total, the fraction of 0-order nodes that become of higher order is on average θ`0(k− 1).

Thus,

`0(k+) = (1− θ)`0(k − 1).

Similarly, we consider m ≥ 1. The fraction of m-order nodes that have new arrivals is θ`m(k − 1).

These nodes will have larger orders. Suppose source i is of order m, m ≥ 1, i.e., δi(k−) = hi(k
−)−

wi(k
−) = m, once a new packet arrives, then wi(k+) = 0, hi(k+) = hi(k

−), and δi(k+) = hi(k
+) =

m+wi(k
−). From Lemma 16, wi(k−) > 0, then δi(k+) > δi(k

−) = m. The order of a m-order node

increases once it receives a new packet. In total, the fraction of m-order nodes that have larger

orders is θ`m(k − 1).
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More precisely, consider a j-order node, j < m. This node becomes an m-order node if it receives

a new packet and wi(k−) = m− j. Using Lemma 16, we can write

`m(k+) =(1− θ)`m(k − 1) +
m−1∑
j=0

θ`j(k − 1) Pr
(
wi(k

−) = m− j
)

=(1− θ)`m(k − 1) +

m−1∑
j=0

θ`j(k − 1)θ(1− θ)m−j−1

=(1− θ)`m(k − 1) + θ2
m−1∑
j=0

`j(k − 1)(1− θ)m−j−1. (A.23)

where the second term in (A.23) on the left-hand side is the average fraction of nodes that have just

become of order m. Denoting it by am, we have

am(k) = θ2
m−1∑
j=0

`j(k − 1)(1− θ)m−j−1. (A.24)

A.8. Proof of Lemma 2

From the expression of `∗m in (2.29), 0 ≤ m ≤ T ∗ − 1, we obtain

`∗0 =
1

eMθ
(A.25)

`∗m =
a∗m
θ
, 0 ≤ m ≤ T ∗ − 1. (A.26)

From (2.26), a∗m depends on {`∗j}j≤m−1 and from (A.26), `∗m depends on a∗m for 1 ≤ m ≤ T ∗−1. So

they can be recursively found and in particular, it is not difficult to prove for all 1 ≤ m ≤ T ∗ − 1:

a∗m =
θ

eM
(A.27)

`∗m =
1

eM
. (A.28)
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We prove this by mathematical induction on T ∗ ≥ 2. For T ∗ − 1 = 1, the statement holds because

a∗1 = θ2`∗0 =
θ

eM
(A.29)

`∗1 =
a∗1
θ

=
1

eM
. (A.30)

Now suppose the statements (A.27) - (A.28) hold for m ≤ T∗ − 1 = k. We prove the statement for

T∗ − 1 = k + 1 and in particular we find a∗k+1 and `∗k+1 below:

a∗k+1 =θ2
k∑
j=0

`∗j (1− θ)k−j = θ2 1

eM

k∑
j=1

(1− θ)k−j + θ2(1− θ)k 1

eMθ

=θ2 1

eM

1− (1− θ)k

θ
+ θ(1− θ)k 1

eM
=

θ

eM
.

Next, using (A.26), we find

`k+1 =
1

eM
. (A.31)

Moreover, using the derivation in (A.31), we also find

a∗T ∗ =
θ

eM
. (A.32)

Finally, from (2.25), we obtain

`+∗m =
1

eM
, 1 ≤ m ≤ T∗ − 1. (A.33)

A.9. Proof of Theorem 2

Summing (2.29) on both sides, we have
∑

m≥1 a
∗
m = θ. Moreover, T∗ satisfies

T∗ = max{t|
∑
m≥t

a∗m ≥
1

eM
} (A.34)
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by its definition in (2.19). The term
∑

m≥T∗ a
∗
m can be re-written as follows:

∑
m≥T∗

a∗m =
∑
m≥1

a∗m −
∑
m<T∗

a∗m
(a)
= θ − (T∗ − 1)

θ

eM
(A.35)

where (a) follows by (2.32) in Lemma 2. On the other hand,
∑

m≥T∗ a
∗
m satisfies the following

inequality by (A.34):

∑
m≥T∗

a∗m ≥
1

eM
. (A.36)

Putting (A.35) and (A.36) together, we find

T∗ = beM − 1

θ
+ 1c (A.37)

since T∗ is an integer.

A.10. Proof of Theorem 3

The proof is organized into three parts:

Part 1: Preliminaries. In this part, we discuss some notations and preliminaries which will be used

in the proof. Denote the time just before the arrival of new packets by k− and the time just after

the arrival of new packets by k+. Since we have assumed that all nodes are identical, the sequence

{hi(k+)}∞k=1 is identical (but not independent) across all i = 1, 2, · · · ,M . From (2.2), {wi(k+)}∞k=1

are i.i.d with respect to i. Therefore, the sequence {δi(k+)}∞k=1 is identical but not independent for

all i = 1, 2, · · · ,M .

Since θ = 1
o(M) and in particular θ > 1

eM , from Lemma 2, `+∗m = 1
eM for m = 1, 2, · · · , T∗ and

`+∗0 = o(M)
eM . From Theorem 2, T∗ = beM − 1/θ + 1c = beM − o(M) + 1c. Denote

sT∗ =

T∗−1∑
m=0

`+∗m .
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In the limit of large M , we have

lim
M→∞

sT∗ = lim
M→∞

o(M) + beM − o(M) + 1c − 1

eM
= 1. (A.38)

The expected number of inactive nodes is MsT∗ and the expected number of active nodes is M(1−

sT∗).

Part 2: Find the expression of NAAoI. Let αi = 1
M for i = 1, 2, · · · ,M in (2.3):

JSAT (M) = lim
K→∞

E[
1

M2

M∑
i=1

1

K

K∑
k=1

hi(k
+)] , J1 + J2

where

J1 = lim
K→∞

E[
1

M2

M∑
i=1

1

K

K∑
k=1

wi(k
+)]

J2 = lim
K→∞

E[
1

M2

M∑
i=1

1

K

K∑
k=1

δi(k
+)].

In addition, J2 = J21 + J22, where

J21 = lim
K→∞

E[
1

K

K∑
k=1

1

M2

∑
i:δi(k+)<T∗

δi(k
+)]

J22 = lim
K→∞

E[
1

K

K∑
k=1

1

M2

∑
i:δi(k+)≥T∗

δi(k
+)].

Part 3: Find the limit of NAAoI with respect toM . First, we consider J1. From (2.2), wi(k+) has a

geometric distribution with parameter θ
(
with wi(k+) = 0, 1, 2, · · ·

)
for all i. Let w have the same

distribution as wi(k+). We thus have

J1 =
1

M
E[w] =

1− θ
Mθ

. (A.39)
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Next, we consider J21:

lim
M→∞

J21 = lim
M→∞

lim
K→∞

E[
1

K

K∑
k=1

1

M2

∑
i:δi(k+)<T∗

δi(k
+)]

= lim
M→∞

lim
K→∞

E[
1

K

K∑
k=1

1

M2

M∑
i=1

δi(k
+)1(δi(k+)<T∗)]

= lim
M→∞

lim
K→∞

E[
1

K

K∑
k=1

1

M

T∗−1∑
j=1

∑M
i=1 δi(k

+)1(δi(k+)=j)

M
]

= lim
M→∞

lim
K→∞

E[
1

K

K∑
k=1

1

M

T∗−1∑
j=1

j
∑M

i=1 1(δi(k+)=j)

M
]

= lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M

T∗−1∑
j=1

j
E[
∑M

i=1 1(δi(k+)=j)]

M
. (A.40)

Substituting `j(k+) for the term
E[
∑M
i=1 1(δi(k

+)=j)]

M , we find

lim
M→∞

J21 = lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M

T∗−1∑
j=1

j`j(k
+). (A.41)

By stationarity, note that

`∗+j = lim
k→∞

`j(k
+).

By the Cesaro Mean Lemma,

lim
K→∞

∑K
k=1 `j(k

+)

K
= `∗+j .

Therefore,

lim
M→∞

J21 = lim
M→∞

1

M

T∗−1∑
j=1

j`∗+j = lim
M→∞

1

M

T∗(T∗ − 1)

2

1

eM
=
e

2
(A.42)

where in the last step we have substituted `∗+j = 1
eM for j = 1, . . . , T∗ − 1 (see Lemma 2).
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Finally, we consider J22:

lim
M→∞

J22 = lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M2

M∑
i=1

E[δi(k
+)1δi(k+)≥T∗ ]

= lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M2

M∑
i=1

(
E[δi(k

+)|δi(k+) ≥ T∗] Pr(δi(k
+) ≥ T∗)

)
(a)

≤ lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M2

M∑
i=1

cM Pr(δi(k
+) ≥ T∗). (A.43)

In the above chain of inequalities, step (a) holds because E[δi(k
+)|δi(k+) ≥ T∗] = O(M). To show

this, we first observe that δi(k) is increasing in k until a delivery occurs. Now, note that δi(k+)

is upper bounded by T∗ plus the peak age at the first delivery after time slot k. The peak age is

bounded by Xi (the inter-arrival time), which is o(M) on average, plus delay Di, which is constant

on average (similar to (A.21)). The threshold T∗ is also O(M). So overall, we have

E[δi(k
+)|δi(k+) ≥ T∗] ≤ cM

for some constant c. Note that

Pr(δi(k
+) = j) = E[1{δi(k+)=j}]

therefore

1

M

M∑
i=1

Pr(δi(k
+) ≥ T∗) =

1

M

M∑
i=1

∑
j≥T∗

Pr(δi(k
+) = j) =

∑
j≥T∗

1

M

M∑
i=1

Pr(δi(k
+) = j)

=
∑
j≥T∗

1

M

M∑
i=1

E[1{δi(k+)=j}] =
∑
j≥T∗

`j(k
+).
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Again, by the Cesaro Mean Lemma,

lim
M→∞

J22 ≤ lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M
cM

∑
j≥T ∗

`j(k
+)


= lim
M→∞

1

M
cM

∑
j≥T ∗

`∗j

 = lim
M→∞

1

M
cM(1− s∗T ) = 0.

The last equality follows from (A.38) (limM→∞ sT ∗ = 1). Finally, summing J1, J21 and J22, we find

lim
M→∞

E[JSAT (M)] =
e

2
.

A.11. Proof of Theorem 4

Summing (2.29) on both sides, we have

∑
m≥1

a∗m = θ. (A.44)

From the definition of the threshold in (2.19), T∗ satisfies

T∗ = max

t|∑
m≥t

a∗m ≥ min
(
θ,
Cπ

(1)

M

) . (A.45)

If θ ≤ Cπ
(1)

M , we have T∗ = 1 by (A.44). If θ > Cπ
(1)

M , however, we have

Cπ
(1)

M
≤
∑
m≥T∗

a∗m =
∑
m≥1

a∗m −
∑
m<T∗

a∗m
(a)
= θ − (T∗ − 1)

θCπ
(1)

M
(A.46)

where (a) follows from (A.44) and (2.37). Using (A.46) and noting that T∗ is integer, we find

T∗ =

⌊
M

Cπ
(1)
− 1

θ
+ 1

⌋
. (A.47)
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A.12. Proof of Theorem 5

The proof of Theorem 5 is almost exactly the same as that of Theorem 3. After replacing the sum

arrival rate of the channel, e−1, by Cπ(1) , from Part 1, Part 2 and Part 3 in the proof of Theorem 3,

we have

J1 =
1

M
E[w] =

1− θ
Mθ

(A.48)

lim
M→∞

J21 = lim
M→∞

1

M

T∗−1∑
j=1

j`∗+j = lim
M→∞

1

M

T∗(T∗ − 1)

2

Cπ
(1)

M
=

1

2Cπ
(1)

(A.49)

and

lim
M→∞

J22 ≤ lim
M→∞

lim
K→∞

1

K

K∑
k=1

1

M2

M∑
i=1

cM Pr(δi(k
+) > T∗). (A.50)

From Part 3 in the proof of Theorem 3, we knew that the last inequality holds because E[δi(k
+)|δi(k+) >

T∗] = O(M). This, however, is not as oblivious here. To show this, we first observe that δi(k) is

increasing in k until a delivery occurs. Now, note that δi(k+) is upper bounded by T∗ plus the peak

age at the first delivery after time slot k. The peak age is bounded by Xi (the inter-arrival time),

which is o(M) on average, plus delay Di, whose expectation is upper bounded by a constant times

M as formulated in Lemma 17 below. Therefore, by the counterpart of the proof of Theorem 3, we

have limM→∞ J22 = 0 and summing J1, J21 and J22,

lim
M→∞

E[JGSAT (M)] =
1

2Cπ
(1)
.

Lemma 17. The expectation of delay, E[Di], satisfies

E[Di] ≤ c′M

where c′ is a constant that depends on the employed transmission policy.

184



Proof. Recall that limM→∞C
π(1)

(M) = Cπ
(1) . Denote the inter-delivery time for source i by Ii.

Thus the expected number of received packets from source i from time slot 0 to K is K
E[Ii]

. Since

Cπ
(1)

(M) is the sum throughput, we have

Cπ
(1)

(M) = lim
K→∞

∑M
i=1

K
E[Ii]

K
.

Moreover, all nodes are statistically identical. Therefore, Cπ(1)
(M) = M

E[Ii]
and E[Ii] = M

Cπ
(1)

(M)
.

Note that E[Di] ≤ E[Ii] and for any ε > 0, there exists a N0 > 0 such that Cπ(1)
(M) ≥ Cπ

(1) − ε

for all M ≥ N0. Therefore,

E[Di] ≤
M

Cπ
(1) − ε

, c′M.
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APPENDIX B

Proofs in Chapter 3

B.1. The Strong Law of Large Numbers holds for {I(i)
` }`

From Definition 3 and Definition 4, I(i)
` = J

(i)
` + U

(i)
` − 1, and J (i)

` is measurable and independent

of U (i)
` . Consider I(i)

1 and I(i)
m , m ≥ 1. J (i)

1 is independent of J (i)
m , U (i)

1 and U (i)
m . Then

E[I
(i)
1 I(i)

m ]− E[I
(i)
1 ]E[I(i)

m ] = E[U
(i)
1 U (i)

m ]− E[U
(i)
1 ]E[U (i)

m ]

which implies the correlation between I(i)
1 and I(i)

m is the same as the correlation between U (i)
1 and

U
(i)
m .

Now we consider the correlation between U
(i)
1 and U

(i)
m . We first claim that the Markov process

S(k) =
(
N(k), N̂(k)

)
is geometrically ergodic [240]. In fact, by Assumption 2, the system is

stabilized. Note that we set λ̂(k) = e−1 in (3.8) and λ(k) < e−1 for all k. Since λm = lim supk λ(k) <

e−1 = λ̂(k). From [240, Theorem 3.1 and Section IV], Markov process S(k) is geometrically ergodic.

Define the state space of S(k) as P. For any i, j ∈ P, define pij(k) = [P (k)]ij and Π = [πi]i as the

transition probability in time slot k and the stationary distribution, respectively. A Markov chain

is geometrically ergodic [241] if there are ρ < 1 and C <∞ such that for all i, j, k

|pij(k)− πj | ≤ Cρk. (B.1)

From (B.1), in the limit of k, the transition probability equals to the stationary distribution, i.e.,

limk→∞ pij(k) = πj for any i, j ∈ P.

Now, we consider U (i)
1 = n and U (i)

m = l.

Pr(U
(i)
1 = n,U (i)

m = l) = Pr(U
(i)
1 = n) Pr(U (i)

m = l|U (i)
1 = n) (B.2)

Define number of the time slots between U (i)
1 and U (i)

m as m′, m′ ≥ m. Define the states of S(k) just
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before and after U (i)
1 as s1 and s2. Define the state of S(k) just before U (i)

m as sm. In the following

steps, we use πsi and Pr(si) interchangeably. Then, due to the Markovity of S(k),

Pr
(
U

(i)
1 = n,U (i)

m = l
)

= Pr(U
(i)
1 = n) Pr(U (i)

m = l|U (i)
1 = n)

=
∑

s1,s2,sm∈P
Pr(s1) Pr(U

(i)
1 = n|s1) Pr(s2|U (i)

1 = n, s1)× Pr(sm|s2) Pr(U (i)
m = l|sm).

From (B.1),

pij(k) = πj + εij(k) (B.3)

where |εij(k)| ≤ Cρk for all i, j ∈ P. Note that the number of time slot between U (i)
1 and U (i)

m is

m′. By the definition of transition probabilities,

Pr(sm|s2) =
∑
sm−1

psm−1sm Pr(sm−1|s2).

Let ε(m′) = maxsm−1,sm∈P |εsm−1sm(m′)|. Then,

Pr(sm|s2) ≤
(
πsm + ε(m′)

) ∑
sm−1

Pr(sm−1|s2) ≤ πsm + ε(m′).

Thus,

Pr(U (i)
m = l|U (i)

1 = n) ≤
∑
sm∈P

(
πsm + ε(m′)

)
Pr(U (i)

m = l|sm).

Consider the stationary distribution Π, define

δ = min
i
{πi > 0},
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δ is a constant depending on the stationary distribution, hence the number of nodes M . Then,

Pr(U (i)
m = l|U (i)

1 = n) ≤
∑
sm∈P

(
πsm + ε(m′)

)
Pr(U (i)

m = l|sm)

≤ Pr(U (i)
m = l) + ε(m′)

∑
sm∈P

πsm
δ

Pr(U (i)
m = l|sm)

= Pr(U (i)
m = l) +

ε(m′)

δ

∑
sm∈P

Pr(sm) Pr(U (i)
m = l|sm)

= Pr(U (i)
m = l)

(
1 +

ε(m′)

δ

)
.

Therefore,

E[U
(i)
1 U (i)

m ] ≤
(
1 +

ε(m′)

δ

)∑
n

nPr(U
(i)
1 = n)×

∑
l

lPr(U (i)
m = l) ≤

(
1 +

ε(m′)

δ

)
E[U

(i)
1 ]E[U (i)

m ]

Note that ε(m′) ≤ Cρm′ , so

E[U
(i)
1 U (i)

m ]− E[U
(i)
1 ]E[U (i)

m ] ≤ E[U
(i)
1 ]E[U (i)

m ]
C

δ
ρm
′ ≤ C ′ρm.

The last equality holds because m′ ≥ m and ρ < 1.

B.2. Proof of Lemma 3

Continuing from (3.13), we have

αβ =E

[
lim
K→∞

1

MK

K∑
k=1

M∑
i=1

1(node i is active at time k)

]
= E

[
1

M

M∑
i=1

p(i)
a

]
(B.4)

where p(i)
a is the fraction of time that node i is active in the limit of K →∞,

p(i)
a = lim

n→∞

∑n
`=1 U

(i)
`∑n

`=1 I
(i)
`

. (B.5)
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Furthermore,

E[p(i)
a ] =E[ lim

n→∞

∑n
`=1 U

(i)
`∑n

`=1 I
(i)
`

] = E[ lim
n→∞

∑n
`=1 U

(i)
` /n∑n

`=1 I
(i)
` /n

]

(b)
=
E[limn→∞

∑n
`=1 U

(i)
`

n ]

E[I
(i)
` ]

(c)
=

1

E[Iβ]
lim
n→∞

E[

∑n
`=1 U

(i)
`

n
] =

E[U
(i)
` ]

E[I
(i)
` ]

.

(b) holds due to limn→∞

∑n
`=1 I

(i)
`

n = E[I
(i)
` ] in Appendix B.1. (c) holds by the dominated convergence

theorem because U (i)
` is measurable. Therefore,

αβ = E

[
1

M

M∑
i=1

p(i)
a

]
=

E[U
(i)
` ]

E[I
(i)
` ]

.

B.3. Proof of Lemma 4

(1) Note that the channel throughput is c(M). Define ni as the total delivered number of packets

delivered from node i up to and including time slot K. Note that the transmission policy is

stationary, so ni → ∞ implies K → ∞. By Appendix B.1, the Law of Large Number holds for

{I(i)
` }, so the throughput is

M∑
i=1

lim
ni→∞

ni∑ni
`=1 I

(i)
`

=
M

E[Iβ]
= c(M),

which implies

E[Iβ] =
M

c(M)
.

(2) Using Lemma 3, we then obtain E[U
(i)
` ] = M

c(M)αβ , hence E[Uβ] = M
c(M)αβ . From (3.14), noting

that αβ ≤ 1, we find

αβ =
1−

√
1− 4λm/M

2
=

2λm/M

1 +
√

1− 4λm/M
≤ 2λm

M
.
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Therefore, we have

Mαβ ≤ 2λm < 2e−1.

From Assumption 2, under an optimal β, if M is sufficient large, then c(M) ≈ e−1, so there exists

ε > 0, such that c(M) > e−1 − ε. Therefore, from (3.16), we find

E[Uβ] = o(M).

B.4. Proof of Lemma 5

At the beginning of time slot k, the estimation error is

Xi(k)− X̂i(k) = Xi(k)−Xi(k
(i)
`−1) =

k−k(i)
`−1∑

l=1

Wi

(
l + k

(i)
`−1

)
.

By the stationarity of {Wi(k)}∞k=1 and using (3.5), we conclude

Xi(k)− X̂i(k) ∼
hi(k)∑
l=1

Wi(l).

Now note that hi(k) is independent of {Wi(k)}∞k=1 under oblivious policies. Therefore, using Wald’s

equality, we find

E[Xi(k)− X̂i(k)] = 0

E[
(
Xi(k)− X̂i(k)

)2
] = E[hi(k)]σ2.
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B.5. Proof of Proposition 5

Denote T (i)(k) = {k(i)
j }`j=0 with k(i)

` ≤ k. We devise the MW policy using techniques from Lyapunov

Optimization. Define the Lyapunov function

L(k) =
1

M

M∑
i=1

(
Xi(k)− X̂i(k)

)2 (B.6)

and the one-slot Lyapunov Drift

LD(k) = E[L(k + 1)− L(k)|T (i)(k)]. (B.7)

Recall that the proposed policy is oblivious to the monitored process. So Wi(j)’s are independent

of hi(k). Using (3.18), (B.6), and (B.7), we write

LD(k) =E[L(k + 1)− L(k)
∣∣T (i)(k)] =

σ2

M

M∑
i=1

E
[
hi(k + 1)− hi(k)

]
. (B.8)

Moreover, the age functions have the following recursion:

hi(k + 1) = di(k) + (1− di(k))(hi(k) + 1). (B.9)

where di(k) ∈ {0, 1} indicates a successful delivery from source i at time k. Note
∑M

i=1 di(k) = 1.

Under the MW policy, no collisions occur in every time slot, so hi(k) is a scalar (not a random

variable) for all i, k. Substituting hi(k + 1) from (B.9) into (B.8), we obtain

LD(k) =
σ2

M

M∑
i=1

(
1− hi(k)di(k)

)
.

Thus, minimizing LD(k) is equivalent to choosing i∗ such that hi∗(k) = maxi hi(k).

Since we assumed hi(0) = 1 for all nodes, from Lemma 2 in [13, Section III], the above MW policy

is equivalent to a Round-Robin policy. Consequently, for all i = 1, . . . ,M , and k ≥ i, we get
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hi(k) = 1, 2, · · · ,M successively and periodically, and

lim
K→∞

1

K

M∑
i=1

hi(k) =
M(M + 1)

2
.

Therefore,

lim
M→∞

LMW (M) = lim
M→∞

σ2

M2

M(M + 1)

2
=
σ2

2
.

B.6. Proof of Lemma 6

From (3.30), (3.31) can be written as

LEbT (M) = lim
K→∞

E[
1

M2K

M∑
i=1

ni∑
`=1

∆
(i)
` ] (B.10)

where ni is the total number of packets delivered from source i up to and including time slot K.

From the proof of Appendix B.1, {I(i)
` } is measurable. Then, from (3.31), ∆

(i)
` is measurable. By

the dominated convergence theorem, we can exchange the order of limK→∞ and E in (B.10).

Note that {K → ∞} is equivalent to {ni → ∞} for all i. It follows that in the limit of large time

horizon K (equivalently, large ni for all i), we have

LEbT (M) =E[
1

M2

M∑
i=1

lim
ni→∞

ni∑
`=1

∆
(i)
`

I
(i)
`

] =
1

M2

M∑
i=1

E

[
lim
ni→∞

∑ni
`=1 ∆

(i)
` /ni∑ni

`=1 I
(i)
` /ni

]

=
1

M2

M∑
i=1

1

E[I
(i)
` ]

lim
ni→∞

E

[∑ni
`=1 ∆

(i)
`

ni

]
=

1

M

E[∆
(i)
` ]

E[I
(i)
` ]

.

The last equality holds because ∆
(i)
` is identical over `. Recall that ∆β and Iβ have the same

distribution as ∆
(i)
` and I(i)

` , respectively. Therefore,

LEbT (M) =
1

M

E[∆β]

E[Iβ]
.
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B.7. Proof of (3.36)

For any Jβ + 1 ≤ j ≤ Jβ + Uβ − 1, Wj is independent of SJβ , hence Jβ . Therefore,

E[S2
j ] =E[(SJβ +WJβ+1 + · · ·+Wj)

2] = E[S2
Jβ

] + E[j − Jβ]σ2.

Note that given β, Jβ and Uβ are independent, This helps to further simplify the numerator of

LEbT2 (M) in (3.36),

E
[ Jβ+Uβ−1∑
j=Jβ+1

S2
j

]
=EUβ

{
E
[ Jβ+Uβ−1∑
j=Jβ+1

(SJβ +WJβ+1 + · · ·+Wj)
2|Uβ

]}

=EUβ
{

(Uβ − 1)E[S2
Jβ

] + E[

Jβ+Uβ−1∑
j=Jβ+1

(j − Jβ)]σ2|Uβ
}

=EUβ
{

(Uβ − 1)E[S2
Jβ

] +
Uβ(Uβ − 1)

2
σ2|Uβ

}
= (E[Uβ]− 1)E[S2

Jβ
] + E

[Uβ(Uβ − 1)

2

]
σ2.

Substituting (3.29) into the equation above,

LEbT2 (M) =
1

M
·

2E[Jβ](E[Uβ]− 1) + E[U2
β ]− E[Uβ]

2E[Iβ]
σ2.

B.8. Proof of Lemma 7

The proof of the first part is the same as that of Theorem 7.5.5 and Theorem 7.5.9 in [194, Chapter 7].

Here, we prove the second part. Using [32, Lemma 4], we have

E[

∫ J

0
B2
t dt] =

1

6
E[B4

J ].

From the definition of J , B4
J = a4, then E[B4

J ] = a4, hence

E[

∫ J

0
B2
t dt] =

1

6
a4.

From Theorem 7.5.9 in [194, Chapter 7], E[J2] = 5
3a

4, so E[
∫ J

0 B2
t dt] = 1

10E[J2].
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B.9. Proof of Theorem 6

We start with the expression of L̂EbT (M) in (3.40). Using (3.10), (3.40) can be re-written as

1

σ2
L̂EbT (M) =

1
5E[J2

β ] + E[U2
β ]

2ME[Iβ]
=

1
5E[J2

β ] + E[(Iβ − Jβ − 1)2]

2ME[Iβ]

=
1
5E[J2

β ] + E[I2
β] + E[J2

β ] + 1− 2E[Iβ] + 2E[Jβ]− 2E[IβJβ]

2ME[Iβ]

Now replace for Iβ in E[IβJβ] using (3.10). Consider M sufficiently large, and note that Jβ ≤ Iβ .

We can approximately write the equation above as follows

L̂EbT (M) ≈
1
5E[J2

β ] + E[I2
β]− 2E[(Uβ + 1)Jβ]− E[J2

β ]

2ME[Iβ]
σ2

(a)
=

1
5E[J2

β ] + E[I2
β]− 2E[Uβ + 1]E[Jβ]− E[J2

β ]

2ME[Iβ]
σ2

(b)
≈

1
5E[J2

β ] + E[I2
β]− E[J2

β ]

2ME[Iβ]
σ2 (B.11)

(c)
=

1
5E[J2

β ] +
(
E[Iβ]

)2
+ V ar(Uβ)−

(
E[Jβ]

)2
2ME[Iβ]

σ2 (B.12)

where (a) holds because Uβ and Jβ are independent given β, (b) holds because E[Uβ] = o(M) (see

(3.16)) and Jβ < Iβ , and (c) holds by (3.10) and the independence of Uβ and Jβ which leads to

V ar(Uβ) + V ar(Jβ) = V ar(Iβ).

Substituting (3.15) and (3.38) into (B.12), we obtain

L̂EbT (M) ≈
M2

c(M)2 − 2β4

3σ4 + V ar(Uβ)

2 M2

c(M)

σ2. (B.13)

Note that Jβ , as defined before, is a stopping time of the discretization of the considered Wiener

process B(t), and therefore Jβ > J , almost everywhere. We thus conclude that

E[Jβ] > E[J ]. (B.14)
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Delay per transmission is 1 time slot, so Uβ ≥ 1. Using (3.15) and (B.14), we can write

0 ≤ E[Uβ]− 1 =
M

c(M)
− E[Jβ] <

M

c(M)
− E[J ]. (B.15)

Substituting E[J ] = β2

σ2 (see (3.38)) into (B.15), we find β ≤ σ
√

M
c(M) . It is now easy to see that

β̂ = σ
√

M
c(M) is the minimum point of

− 2β4

3σ4

2 M2

c(M)

. We will next show that the term V ar(Uβ∗ )

2 M2

c(M)

(in (B.13))

is negligible and therefore β∗ ≈ β̂ is approximately optimal. This will lead to L̂EbT = 1
6c(M)σ

2.

Recall from [240, Theorem 3.1 and Section IV] (see also Appendix B.6) that S(k) =
(
N(k), N̂(k)

)
(depending on β∗) is geometrically ergodic. Let

S(k) ∈ {(e1, s1), (e2, s2), · · · , (em, sm)},

andm be finite. Define the state space of S(k) as P, |P| = m. Let pij(k) be the transition probability

matrix in time slot k, i, j ∈ P. Let πi be the stationary distribution of S(k). For i = 1, 2, · · · ,m, the

transmitting probability νi is obtained by (3.8), and the corresponding probability of a successful

delivery of each active node, denoted by ri, is

ri =


νi(1− νi)ei−1 ei ≥ 1

0 ei = 0

for i = 1, 2, · · · ,m. Denote by Pr(i, k) the probability that the system is in state i in time slot k.

Let H(j, i, k) ∈ {0, 1} be an indicator. H(j, i, k) = 1 represents that node j becomes newly active

in time slot k when the system is in state i. Consider any node j. We have

Pr(Uβ∗ = 1) = lim
k→∞

m∑
i=1

Pr(i, k)E[H(j, i, k)]ri

Note that the system is stationary, and limk→∞ E[H(j, i, k)] exists for all j, i. Since all nodes are
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identical, when the system is stationary, we have

lim
k→∞

E[H(1, i, k)] = · · · = lim
k→∞

E[H(M, i, k)] , h̃i.

In addition, when the system is stationary, limk→∞ Pr(i, k) = πi. Denote the dominant term of

Pr(Uβ∗ = 1) as ∆1, thus ∆1 =
∑m

i=1 πih̃iri. Similarly,

Pr(Uβ∗ = 2) = lim
k→∞

m∑
i=1

Pr(i, k)E[H(j, i, k)](1− ri)×
m∑
l=1

pil(k + 1)rl.

Since S(k) is geometrically ergodic, we have |pij(k)− πj | ≤ Cρk, where C < ∞, 0 < ρ < 1. Thus,

the dominant term of Pr(Uβ∗ = 2) when k →∞, denoted by ∆2, is

∆2 =

m∑
i=1

πih̃i(1− ri)
m∑
j=1

πjrj = (y −∆1)µ

where y =
∑m

i=1 πih̃i and µ =
∑m

j=1 πjrj . By a similar process, denote the dominant term of

Pr(Uβ∗ = l) as ∆l:

∆l = (µ−∆1)(1− µ)l−2µ, l ≥ 3.

So the dominant term of E[Uβ∗ ], denoted by Λ1, is

Λ1 =∆1 + (y −∆1)µ
∞∑
l=2

(1− µ)l−2l = ∆1 + 2(y −∆1) +
1− µ
µ

(y −∆1) = y + (y −∆1)
1

µ
.

By Lemma 4, E[Uβ∗ ] = o(M), so Λ1 = o(M). Note that 1
µ = Λ1−y

y−∆1
, then 1

µ = o(M) since y and ∆1

are scalars.
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The dominant term of E[U2
β∗ ], denoted by Λ2, is similarly

Λ2 =∆1 + (y −∆1)µ

∞∑
l=2

(1− µ)l−2l2 = ∆1 + (y −∆1)µ

∞∑
l=2

(1− µ)l−2
(
(l − 2)2 + 4(l − 2)− 4

)
=∆1 + (y −∆1)

((1− µ)(2− µ)

µ2
+ 4

1− µ
µ
− 1
)
.

Note that 1
µ = o(M), thus Λ2 = o(M2), E[U2

β∗ ] = o(M2), and V ar(Uβ∗) = o(M2) which implies
V ar(Uβ∗ )

M2 ≈ 0.

So β∗ ≈ β̂ = σ
√

M
c(M) is approximately optimal and L̂EbT ≈ 1

6c(M)σ
2. From Assumption 2, when

M is sufficiently large, c(M) ≈ e−1, then L̂EbT ≈ e
6σ

2, and the corresponding β∗ ≈ β̂ = σ
√
eM .

B.10. Assumptions 1, 2 are (approximately) satisfied

We first verify Assumption 2. Recall that N(k) is the number of active nodes at the end of time

slot k. Denote D(k) as the number of nodes that become inactive (from the active state) in time

slot k. Then, limk→∞ E[D(k)] = c(M). Thus,

N(k + 1) = min{N(k) + λ(k + 1),M} −D(k + 1). (B.16)

From (3.12) and Lemma 3, when k → ∞, the limit limk→∞ E[N(k)] exists. Therefore, letting

k →∞, (B.16) is reduced to

c(M) = λm. (B.17)

Since c(M) < e−1, then λm < 1/e, which implies the system is stabilized.

Then, we investigate E[Uβ∗ ]. From Lemma 3 and Lemma 4, when M is sufficiently large,

αβ =
o(M)

M
≈ 0, (B.18)
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then from (3.14) and (B.18),

Mαβ ≈ λm. (B.19)

From (B.17), (B.19) and Lemma 4,

E[Uβ∗ ] ≈
λm
c(M)

= 1. (B.20)

Note that Iβ is the inter-delivery time, and from (3.7), our goal (3.2) can be re-written as

1

M
E
[ Iβ∗∑
k=0

ψ2
i (k)

]
,

which increases with E[Iβ∗ ]. From (3.15), E[Iβ∗ ] decreases with c(M). To obtain the minimum

1
ME

[∑Iβ∗
k=0 ψ

2
i (k)

]
or (3.2), we need the minimum E[Iβ∗ ], thus we let c(M) ≈ e−1. From (B.17),

λm ≈ e−1. Thus, Assumption 2 is (approximately) satisfied.

Next, we verify Assumption 1. Denote q(n,L) as the probability that n of L inactive nodes become

newly active in one slot. Since the system is stationary, q(n,L) will not change over time and only

depends on the error process profile. Recall that a(k) is the number of newly active nodes in time

k. We need to show {a(k) = l1} and {a(k + 1) = l2} are independent where l1, l2 are non-negative

integers. In fact,

Pr{a(k) = l1, a(k + 1) = l2} = Pr{a(k) = l1}Pr{a(k) = l2|a(k) = l1}

Denote di(k) = 1 as an indicator such that node i delivers a packet successfully in time k, otherwise
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di(k) = 0. Then,
∑M

i=1 di(k) = 1 represents that a packet is delivered in time slot k. Thus,

Pr{a(k) = l2|a(k) = l1} = Pr{a(k) = l2|a(k) = l1,

M∑
i=1

di(k) = 0}Pr{
M∑
i=1

di(k) = 0}

+ Pr{a(k) = l2|a(k) = l1,
M∑
i=1

di(k) = 1}Pr{
M∑
i=1

di(k) = 1}

Note that c(M) ≈ e−1, then Pr{
∑M

i=1 di(k) = 1} ≈ e−1, thus

Pr{a(k) = l2|a(k) = l1} ≈ q(l2,M − l1 − 1)1/e+ q(l2,M − l1)(1− 1/e).

Recall that E[a(k)] = λm when k →∞, i.e., the system is stationary. Note that a(k) is non-negative,

so by Markov’s Inequality, we have

Pr{a(k) ≥ O(M)} ≤ E[a(k)]

O(M)
.

Let k,M → ∞, we have Pr{a(k) ≥ O(M)} → 0, which implies a(k) = o(M) with probability 1

when M is sufficiently large. q(l2,M − l1 − 1) ≈ q(l2,M − l1) ≈ q(l2,M) ≈ Pr(a(k + 1) = l2), thus

Pr{a(k) = l1, a(k + 1) = l2} ≈ Pr{a(k) = l1}Pr{a(k) = l2}

when M is sufficiently large. Assumption 1 is thus (approximately) satisfied.

All the proofs in this Appendix are valid for the cases when γ 6= 1.
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APPENDIX C

Proofs of Chapter 4

C.1. Proof of Theorem 10

First, we utilize the term TB1,WΞn
ρ(TB2,WX) to modify ‖Yn − Y ‖, by triangle inequality, we have

‖Yn − Y ‖

=‖TB1(WΞn)ρ
(
TB2,WΞn

Xn

)
− TB1,Wρ

(
TB2,WX

)
‖

≤‖TB1,WΞn
ρ
(
TB2,WΞn

Xn

)
− TB1,WΞn

ρ
(
TB2,WX

)
‖

+‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖.

For the first term, note that TB1,WΞn
satisfy Assumption 3, the norm of the operator TB1,WΞn

is

bounded by 1, hence

‖TB1,WΞn
ρ
(
TB2,WΞn

Xn

)
− TB1,WΞn

ρ
(
TB2,WX

)
‖

=‖TB1,WΞn

(
ρ(TB2,WΞn

Xn)− ρ(TB2,WX)
)
‖

≤‖ρ(TB2,WΞn
Xn)− ρ(TB2,WX)‖ ≤ ‖TB2,WΞn

Xn − TB2,WX‖.

The last inequality holds due to Assumption 4. By Lemma 10,

‖TB2,WΞn
Xn − TB2,WX‖ ≤ Θ(Ω2, ω2)‖X‖+ (Ω2ε+ 2)‖X −Xn‖. (C.1)

Note that the activation function ρ is pointwise non-linear. Then, for the second term, again, by

Lemma 10,

‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖ ≤ Θ(Ω1, ω1)‖ρ

(
TB2,WX

)
‖.

Note that TB2,W satisfies Assumption 3 and ρ satisfies Assumption 4, so ‖ρ
(
TB2,WX

)
‖ ≤ ‖TB2,WX‖ ≤
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‖X‖. Thus,

‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖ ≤ Θ(Ω1, ω1)‖X‖ (C.2)

From (C.1) and (C.2), we obtain the desired results.

C.2. Proof of Theorem 11

First, we utilize the term TB1,WΞn
ρ
(
TB2,WX

)
to modify ‖Yn − Y ‖, by triangle inequality, we have

‖Yn − Y ‖ =‖TB1,WΞn
ρ
(
TB2,WΞn

Xn

)
− TB1,Wρ

(
TB2,WX

)
‖

≤‖TB1,WΞn
ρ
(
TB2,WΞn

Xn

)
− TB1,WΞn

ρ
(
TB2,WX

)
‖

+‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖.

For the first term, note that the convolutional filters that make up its layers all satisfy Assumption 3,

hence

‖TB1,WΞn
ρ
(
TB2,WΞn

Xn

)
− TB1,WΞn

ρ
(
TB2,WX

)
‖

=‖TB1,WΞn

(
ρ
(
TB2,WΞn

Xn

)
− ρ
(
TB2,WX

))
‖

≤‖ρ
(
TB2,WΞn

Xn

)
− ρ
(
TB2,WX

)
‖

≤‖TB2,WΞn
Xn − TB2,WX‖.

The last inequality holds because of Assumption 4. By Lemma 11,

‖TB2,WΞn
Xn − TB2,WX‖ ≤ LFL−1Θ(Ω2, ω2)‖X‖+ (Ω2ε+ 2)‖X −Xn‖. (C.3)

For the second term, again, by Lemma 11,

‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖ ≤ LFL−1Θ(Ω1, ω1)‖ρ

(
TB2(W )X

)
‖.

Note that TB2,W satisfies Assumption 3 and ρ satisfies Assumption 4, so ‖ρ
(
TB2,WX

)
‖ ≤ ‖TB2,WX‖ ≤
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‖X‖. Thus,

‖TB1,WΞn
ρ
(
TB2,WX

)
− TB1,Wρ

(
TB2,WX

)
‖ ≤ LFL−1Θ(Ω1, ω1)‖X‖. (C.4)

From (C.3) and (C.4), we obtain the desired results.

C.3. Proof of Theorem 13

For any given ∆, from the construction of W∆, we know that TW∆
is continous, then TW∆

is

bounded [242], i.e., for any x ∈ L2([0, 1]), we have ‖TW∆
x‖ ≤ ‖TW∆

‖‖x‖. Then, by Cauchy–Schwarz

inequality,

‖X (Y1, Y2)−Xn(Yn,1, Yn,2)‖ = ‖〈Y1 − Yn,1, TW∆
(Y2 − Yn,2)〉‖

≤‖Y1 − Yn,1‖ · ‖TW∆
(Y2 − Yn,2)‖ ≤ ‖TW∆

‖‖Y1 − Yn,1‖‖Y2 − Yn,2‖.

Note that ‖Y1 − Yn,1‖ and ‖Y2 − Yn,2‖ have been bounded by (4.46). Substituting (4.46) into the

above equation, we get the desired results.

C.4. Proof of Theorem 14

Note that ‖A − An‖ = ‖F̃softmaxX − F̃softmaxXn‖. The softmax function Fsoftmax is Lipschit [243],

and F̃softmax is the continous version of Fsoftmax, F̃softmax is in Besov class and is Lipschit [244].

Then, there exists a constant Γ, which is independent of the WRNN Ψ(B1,B2,B3,WΞn , ·, T ), such

that

‖A−An‖ = Γ‖X − Xn‖. (C.5)

The rest task is to find the upper bound of ‖X − Xn‖.

Since X1, X2 ∈ L2([0, 1]), then ‖X1‖, ‖X2‖ ≤ N , where N is a constant. When n → ∞, we have

Xn,1 → X1, Xn,2 → X2, and WΞn → W . For any small η > 0, we can choose n and ε, such that

C2
N‖X1‖‖X2‖ < η

3‖TW∆
‖ , (Ω3 + 2)2‖X1−Xn,1‖‖X2−Xn,2‖ < η

3‖TW∆
‖ , and CN (Ω3 + 2)(‖X1‖‖X1−
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Xn,1‖+ ‖X2‖‖X2 −Xn,2‖) < η
3‖TW∆

‖ , where CN , Ω3 are given in Theorem 13, which implies

‖X (Y1, Y2)−Xn(Yn,1, Yn,2)‖ ≤ η

for any Y1, Y2, and Gn. Since given Y1, Y2, and Gn, Yn,1 and Yn,2 are given, then

‖X − Xn‖

≤
∫ 1

0

∫ 1

0
‖X (Y1, Y2)−Xn(Yn,1, Yn,2)‖dY1dY2

≤ η,

which gives the desired results.

C.5. Transferability on Stochastic Graphs

First of all, we provide the following useful assumptions.

Assumption 6. ([213, AS2]) The graphon W is Ωw-Lipschitz, i.e., |W (u2, v2) − W (u1, v1)| ≤

Ωw(|u2 − u1|+ |v2 − v1|).

Assumption 7. ([213, AS3]) The graphon signal X is Ωx-Lipschitz.

Assumption 8. ([213, AS4]) Given χ3 ∈ (0, 1), n is such that

n− log(2n/χ3)

dW
> 2

Aw
dW

where dW = maxu
∫ 1

0 W (u, v)dv.

Define

Θ2(Ω, ω) =g1(Ω, χ1, χ3, n) + g3(ω, ε) (C.6)

Θ3(Ω, ω) =g′1(Ω, χ1, χ3, n1, n2) + 2g3(ω, ε) (C.7)
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where g1(·) decreases with n at rate O( logn
n ) with the limit 0, g3(·) linealy increases with ω and ε,

and g′1(·) decreases with n at rate O(maxi∈{1,2}
logni
ni

) with the limit 0.

Lemma 18. ([213, Proposition 5]) Let TB1,W be a WNN satisfies Assumptions 4, 6, and 7, and

that the convolutional filters that make up its layers all satisfy Assumption 3. Given a stochastic

graph G with GSO Ξn, let χ1, χ2, χ3 ∈ (0, 0.3], and for any 0 < ε ≤ 1 and n ≥ 4/χ2 satisfying

Assumption 8, with probability at least [1− 2χ1]× [1− χ2]× [1− χ3] it holds that

‖Y − Yn‖ ≤ Θ2(Ω1, ω1)‖X‖+ g2(ω1, χ1, n) (C.8)

where g2(·) decreases with n at rate O( logn
n ) with the limit 0, and Ω1 and ω1 are Lipschitz constants

in Assumption 3.

Lemma 19. ([213, Proposition 6]) Let TB1,W be the WNN in Lemma 18. Given a stochastic graph

Gn1 and Gn2 with GSOs Ξn1 and Ξn2, respectively, let χ1, χ2, χ3 ∈ (0, 0.3], and for any 0 < ε ≤ 1

and n ≥ 4/χ2 satisfying Assumption 8, with probability at least [1− 2χ1]2 × [1− χ2]2 × [1− χ3]2 it

holds that

‖Yn − Y ‖ ≤Θ3(Ω1, ω1)‖X‖+ g′2(ω1, χ1, n1, n2) (C.9)

where g′2(·) decreases with n at the rate O(maxi∈{1,2}
logni
ni

) with the limit 0, and Ω1 and ω1 are

Lipschitz constants in Assumption 3.

Note that Lemma 19 follows directly from Lemma 18 and the trangle inequality. Straighforwardly,

results in Lemma 19 can be extended to GRNN.

Theorem 24. Let TB1,W , TB2,W , and TB3,W be WRNNs satisfy Assumptions 4, 6, and 7, and that

the convolutional filters that make up their layers all satisfy Assumption 3. Given a stochastic graph

Gn1 and Gn2 with GSOs Ξn1 and Ξn2, respectively, let χ1, χ2, χ3 ∈ (0, 0.3], and for any 0 < ε ≤ 1

and n1, n2 ≥ 4/χ2 satisfying Assumption 8, with probability at least [1− 2χ1]2× [1−χ2]2× [1−χ3]2

it holds that

‖Y − Yn‖ ≤
3∑
i=1

NiΘ3(Ωi, ωi)‖X‖+ g′2(ω3, χ1, n1, n2), (C.10)
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where g′2(·) is given in Lemma 19, {Ωi, ωi}3i=1 are Lipschitz constants in Assumption 3, and N1,

N2, and N3 are in Theorem 12.

Proof. From the definition of WRNN in (4.36) and (4.37), to prove Theorem 24, we only need to

apply Lemma 19 repeatedly. And the number of repetitions only depends on T , i.e., the number of

recurrences, which are N1, N2, and N3 given in Theorem 12. We have the desired results.

Finally, we show that the transferability holds in action distributions. For i ∈ {1, 2}, a generic

graph Gni with ni nodes and corresponding node labels {ui}nii=1 has the GSO Ξni sampled from W .

Let xni be the graph signal induced from X based on {ui}nii=1, and let yni be the outputs of (4.23),

which is a GRNN instantiated from (4.39) on this graph. Then, we obtain a WΞni
and a graphon

signal Xni induced by Ξni and xni . Denote Yni as the outputs of (4.39). Let Xni be defined in

Definition 15. Denote the corresonding action distributions as Ani ∼ F̃softmaxXni .

Theorem 25. Let TB1,W , TB2,W , and TB3,W be in Theorem 24. Given a stochastic graph Gn1 and

Gn2 with GSOs Ξn1 and Ξn2, respectively, let χ1, χ2, χ3 ∈ (0, 0.3], and for any 0 < ε ≤ 1 and

n1, n2 ≥ 4/χ2 satisfying Assumption 8, with probability at least [1− 2χ1]2 × [1− χ2]2 × [1− χ3]2 it

holds that
‖Xn1(Yn1,1, Yn1,2)−Xn2(Yn2,1, Yn2,2)‖

≤ ‖T (WF )‖
(
D2
N‖X1‖ · ‖X2‖+

(
g′2(ω3, χ1, n1, n2)

)2
+DNg

′
2(ω3, χ1, n1, n2)(‖X1‖+ ‖X2‖)

)
,

(C.11)

where DN =
∑3

i=1NiΘ3(Ωi, ωi) and N1, N2, and N3 are given in Theorem 12, g′2(·) is given in

Lemma 19, and {Ωi, ωi}3i=1 are Lipschitz constants in Assumption 3.

Remark 29. Similar to Remark 22, for ε0 > 0, we can choose large n1, n2, and small ε, such that

g′1(·) < ε0, g′2(·) < ε0, and g′3(·) < ε0. This implies ‖Xn1(Yn1,1, Yn1,2)−Xn2(Yn2,1, Yn2,2)‖ is bounded

by a small scalar for any Yn1,1, Yn1,2, Yn2,1 and Yn2,2.

Proof. The proof is very similar to that of Theorem 13, so we omit the proof here.
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Theorem 26. Let TB1,W , TB2,W , and TB3,W be in Theorem 24. Given a stochastic graph Gn1

and Gn2 with GSOs Ξn1 and Ξn2, respectively, let χ1, χ2, χ3 ∈ (0, 0.3], and for any small η > 0,

there exists a 0 < ε ≤ 1 and n1, n2 ≥ 4/χ2 satisfying Assumption 8, with probability at least

[1− 2χ1]2 × [1− χ2]2 × [1− χ3]2 it holds that

‖An1 −An2‖ ≤ Γ · η, (C.12)

where Γ is given in Theorem14.

Proof. The proof is very similar to that of Theorem 14, so we omit the proof here.
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APPENDIX D

Proofs in Chapter 5

D.1. Time-sharing Policies

By very similar ideas and proofs in [13, 14, 20, 222], we devise Max-Weight scheduling policies

(without coding) using techniques from Lyapunov Optimization.

Definition 27. Let fi(k) be defined in (5.19). In each slot k, the MW policy chooses the action

Qi,∅ that has the maximum weight as shown in Table D.1:

A(k) Weights
Qi,∅ βiδi,∅(k)(1− εi) + λ(1− εi)fi(k)

Table D.1: Actions and their weights.

D.2. Proof of Lemma 12

For any S ⊂ [M ]\i, we first consider the case where S = ∅ (Step 1), then consider the case where

S 6= ∅ (Step 2).

Step 1. Consider S = ∅. If pj is delivered to user i in time slot k, then from Definition 21, the

AoI of user i is min{k − kj , hi(k − 1) + 1}. Note that k − k1 > k − k2, hence

min{k − k1, hi(k − 1) + 1} ≥ min{k − k2, hi(k − 1) + 1},

which implies p1 provides a larger AoI reduction (for user i) than that of p2. Then, transmitting p2

can not be worse than transmitting p1 in terms of AoI.

Step 2. Consider S 6= ∅. Without loss of generality, suppose that suppose that p1, p2 ∈ Qi,S ,

and i, j1, j2, · · · , jl form a maximal clique. Denote the corresponding coded packet as xτ , where

xτ contains uncoded packet pτ , τ ∈ {1, 2}. Note that x1 and x2 are fully decodable for users

i, j1, j2, · · · , jl, and provide the same AoI reduction to users j1, j2, · · · , jl, respectively. From Defini-

tion 21, the AoI of user i is min{k−kτ , hi(k−1)+1} when recovering xτ . Note that k−k1 > k−k2,
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so min{k−k1, hi(k−1)+1} ≥ min{k−k2, hi(k−1)+1}, and x2 provides smaller AoI for user i. As

a result, encoding p2 can not be worse than encoding p1 in terms of AoI. In this case, transmitting

p2 is not worse than transmitting p1 in the current time slot.

Now, consider the case where p1 and p2 have been encoded in two different coded packets, and

p1 has been encoded first. Suppose that users {i, l1, l2, · · · , lm} and {i, n1, n2, · · · , nt} forms two

maximal cliques. Denote the coded packet containing p1 (respectively, p2) as x′ (respectively, x′′),

and the age reduction for user i as ∆1 (respectively, ∆2). The total age reduction for user i once

decoding p1 and p2 is ∆1 + ∆2. Note that from the condition defined in (5.3), p2 has been cached

by users n1, n2, · · · , nt. Now, we consider another encoding action: the encoder first encodes p2,

i.e., replacing p1 by p2 in x′, denoted by x′p2
. So, p1 is useless for user i after decoding p2, and

the encoder can get another coded packet x̃, where only l1, l2, · · · , lm forms a maximal clique. In

this case, The age reduction for users n1, n2, · · · , nt and l1, l2, · · · , lm when transmitting x′p2
and x̃

are the same as those when transmitting x′ and x′′, which implies encoding p2 is not worse than

encoding p1 in this case.

Thus, from Step 1 and Step 2, encoding p2 can not be worse than encoding p1.

D.3. Proof of Theorem 16

Recall that tπi,Si(k) ∈ {0, 1} and more specifically, if A(k) = Qi,Si ⊕j∈[l] Qτj ,Sτj , then tπi,Si(k) = 1

and tπ
i,S̃i

(k) = 0 where S̃i 6= Si. So we have

∑
Si⊂[M ]\i

tπi,Si(k) ≤ 1. (D.1)

Let Θ(k) = Θ1(k) + λΘ2(k), where

Θ1(k) =E
[ M∑
i=1

βihi(k + 1)−
M∑
i=1

βihi(k)|~s(k)
]

Θ2(k) =E
[ M∑
i=1

(
y+
i (k + 1)

)2 − M∑
i=1

(
y+
i (k)

)2|~s(k)
]
.
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Recall that the channel erasure probability is εi, then

E[dπi (k)] = (1− εi)
∑

S⊂[M ]\i

E[tπi,S(k)]. (D.2)

We first consider Θ1(k). Using (D.1),

hi(k + 1) = di(k)
∑

S⊂[M ]\i

ti,S(k)
(
wi,S(k) + 1

)
+
(
1− di(k)

∑
S⊂[M ]\i

ti,S(k)
)(
hi(k) + 1

)
. (D.3)

From (5.12) and (D.3), we can re-write Θ1(k) as follows:

M∑
i=1

βiE

di(k)
∑

Si⊂[M ]\i

ti,Si(k)
(
wi,Si(k)− hi(k)

)
+ 1
∣∣∣~s(k)


=−

M∑
i=1

βiE
[
di(k)

∑
Si⊂[M ]\i

ti,Si(k)δi,Si(k)
∣∣∣~s(k)

]
+
∑

βi

=−
M∑
i=1

βi(1− εi)
∑

Si⊂[M ]\i

E
[
ti,Si(k)|~s(k)

]
δi,Si(k) +

∑
βi.

Therefore,

Θ1(k) =
M∑
i=1

βi −
M∑
i=1

1{A(k)=Qi,∅}βiδi,∅(k)(1− εi)

−
M∑
l=2

∑
τ1,τ2,··· ,τl

1{A(k)=⊕u∈[l]Qτj ,Sτu }
×

l∑
u=1

βτuδi,Sτu (k)(1− ετu).

(D.4)

Next, we consider Θ2(k). Given ~s(k), the term
∑M

i=1

(
y+
i (k)

)2 is fixed and it is, therefore, sufficient

to consider

Θ̃2(k) = E
[ M∑
i=1

(
y+
i (k + 1)

)2|~s(k)
]
.

Note that

E[
(
y+
i (k + 1)

)2|~s(k)] = E
[((

yi(k) + qi − di(k)
)+)2

|~s(k)
]
, (D.5)
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then,

E[
(
y+
i (k + 1)

)2|~s(k)] =



(
(yi(k) + qi)

+
)2 if

∑
Si⊂[M ]\i

ti,Si(k) = 0

(
(yi(k) + qi − 1)+

)2
(1− εi)

+
(
(yi(k) + qi)

+
)2(

1− (1− εi)
)

if
∑

Si⊂[M ]\i

ti,Si(k) = 1.

(D.6)

Now, we consider the following two cases:

Case 1. If A(k) = Qi,∅, then

Θ̃2(k) =(1− εi)
(((

yi(k) + qi − 1
)+)2

−
((
yi(k) + qi

)+)2
)

+
M∑
j=1

((
yj(k) + qj

)+)2
.

Case 2. If A(k) = ⊕u∈[l]Qτu,Sτu , then

Θ̃2(k) =

l∑
u=1

(1− ετu)

(((
yτu(k) + qτu − 1

)+)2

−
((
yτu(k) + qτu

)+)2
)

+

M∑
j=1

((
yj(k) + qj

)+)2

.

Putting the two cases together, we have

Θ̃2(k) =

M∑
j=1

((
yj(k) + qj

)+)2

−
M∑
j=1

1{A(k)=Qj,∅}fj(k)−
M∑
l=2

∑
τ1,τ2,··· ,τl

1{A(k)=⊕u∈[l]Qτu,Sτu }

l∑
u=1

fτu(k). (D.7)

Using (D.4) and (D.7), one can see that minimizing Θ(k) is equivalent to maximizing

M∑
i=1

1{A(k)=Qi,∅}(1− εi)
(
βiδi,∅(k) + λfi(k)

)
+

M∑
l=2

∑
τu,u∈[l]

1{A(k)=⊕u∈[l]Qτu,Sτu }
×

l∑
u=1

(1− ετu)
(
βτuδi,Sτu (k) + λfτu(k)

)
.

D.4. Proof of Theorem 17

In the proof, we consider M = 3 users. The approach can be generalized to M users straightfor-

wardly.

Step 1: Consider a stationary randomized policy satisfying the minimum requirements of rate

210



Figure D.1: The flow of user 1 in the virtual network under uncoded caching.

(q1, q2, q3), and obtain the feasible region of (µ, ζ1, ζ2, ζ3, ζ4).

Recall that {y+
i (k)}3i=1 is strongly stabilized under (q1, q2, q3) using the ARM policy. By [155, 245,

246], there exists a stationary randomized policy that can reach the optimal throughput/rate, hence

it satisfies the rate constraints. Consider a proper stationary randomized policy defined in (5.20)

and (5.21). We first need to find the feasible region of {µi,∅}i, ζ1, ζ2 and ζ3.

We define Figure D.1 as the equivalent information flow graph for user 1. An uncoded or coded

packet moves through the direction of an arrow. For example, a uncoded packet from Q1,∅ might

be cached in Q1,{2}, Q1,{3}, Q1,{2,3} or decoded by user 1; a coded packet from Q1,{3} and another

virtual queue
(
Q3,{1} or Q3,{1,2}

)
might be cached by Q1,{2,3} or decoded by user 1. When a packet

leaves Q1,{3}, there must be another packet leaves Q3,{1} or Q3,{1,2} in the equivalent information

flow graph for user 3 simultaneously. Define a cut as a line which separates Q1,∅ and user 1 in

Figure D.1. The expected amount of packets transmitting in the equivalent information flow graph

for user 1 can be calculated by cuts. We have 5 cuts in Figure D.1.

Then, we need to find the (expected) throughput inequalities based on the cuts. We describe Cut 1

and Cut 2 as examples and display the inequalities associated with Cuts 3, 4, 5 directly. Cut 1

straightforwardly implies that

µ1,∅(1− ε1) +
∑

j∈{2,3}

µ1,∅σ([3]\j) + µ1,∅σ({1}) ≥ q1, (D.8)
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In (D.8), we do not consider the probability of empty Q1,∅. Inequality (D.8) still holds (but

results in a smaller feasible region) without considering the probability of empty Q1,∅ because the

stationary randomized policy satisfies the rate constraints. Then, to simplify the analysis, we ignore

the probability of empty queues. Note that we consider an independent and symmetric channel,

(D.8) is equivalent to µ(1− ε3) ≥ q.

In Cut 2, the expected amount of packets transmitting through 3 arrows oriented Q1,∅ (see Fig-

ure D.1) is

µ1,∅(1− ε1) + µ1,∅σ({1, 3}) + µ1,∅σ({1}).

The expected amount of packets transmitting through the arrow from Q1,{3} to user 1 (see Fig-

ure D.1) is

(
µ1,{3},3,{1} + µ1,{3},3,{1,2}

)(
1− ε1

)
.

The expected amount of packets transmitting through the arrow from Q1,{3} to Q1,{2,3} (see Fig-

ure D.1) is

µ1,{3},3,{1,2}
(
σ({1}) + σ({1, 3})

)
,

because the encoded packet from Q1,{3} and Q3,{1} can not be cached by user 2 (note that we

consider coding policies with uncoded caching). In total, Cut 2 implies that

µ1,∅(1− ε1) + µ1,∅σ({1, 3}) + µ1,∅σ({1}) + µ1,{3},3,{1}(1− ε1)

+ µ1,{3},3,{1,2}
(
1− ε1 + σ({1}) + σ({1, 3})

)
≥ q1,

(D.9)

which is equivalent to (µ+ ζ2)(1− ε2) + ζ1(1− ε) ≥ q.

By similar analysis, Cut 3 implies that (µ + ζ2)(1 − ε2) + ζ1(1 − ε) ≥ q. Cut 4 implies that

µ(1−2ε2 + ε3)+2ζ1(1− ε)+2ζ2(1− ε2) ≥ q. Cut 5 implies that (µ+2ζ1 +4ζ2 +2ζ3 +ζ4

)
(1− ε) ≥ q.
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Similar process can be done for users 2 and 3, the feasible region of µ, ζ1, ζ2, ζ3 and ζ4 is

3µ+ 3ζ1 + 6ζ2 + 3ζ3 + ζ4 = 1

µ(1− ε3) ≥ q, (µ+ ζ2)(1− ε2) + ζ1(1− ε) ≥ q

µ(1− 2ε2 + ε3) + 2ζ1(1− ε) + 2ζ2(1− ε2) ≥ q

(µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4

)
(1− ε) ≥ q.

(D.10)

Step 2: Find an upper bound on AoI under the stationary randomized policy. Using (D.4) from

the proof of Theorem 16, we write

Θ1(k) =

3∑
i=1

βi −
3∑
i=1

µi,∅βiδi,∅(k)(1− εi)−
3∑
l=2

∑
τ1,Sτ1 ,··· ,τl,Sτl

µ(τ1,Sτ1 ,··· ,τl,Sτl ) ×
l∑

j=1

βτjδi,Sτj (k)(1− ετj ).

Note that wi,S(k) ≤ hi(k) for all i and S, and hence, E[δi,S(k)] ≥ 0. Dropping the terms related to

E[δi,S(k)] when S 6= ∅, we find

Θ1(k) ≤
3∑
i=1

βi −
3∑
i=1

µi,∅βiδi,∅(k)(1− εi). (D.11)

To deal with Θ2(k), we first note that (see [14, Eqn. (60) - (62)])

(
y+
i (k + 1)

)2 − (y+
i (k)

)2 ≤ −2y+
i (k)

(
di(k)− qi

)
+ 1.

Take the expectation on both sides, we have

Θ2(k) ≤
3∑
i=1

−2y+
i (k)

(
E[di(k)]− qi

)
+ 3. (D.12)

Under a stationary, E[di(k)] keeps a constant over k, and E[di(k)] ≥ qi. Using the bounds in (D.11)

and (D.12), we now upper bound the K step drift:
K∑
k=1

E[Θ(k)] ≤
K∑
k=1

3∑
i=1

βi(1− εi)µi,∅E[wi,∅(k)− hi(k)]−
3∑
i=1

2λE[y+
i (k)](E[di(k)]− qi) +K

3∑
i=1

βi + 3Kλ.
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The above inequality can also be re-written as follows:

K∑
k=1

3∑
i=1

βi(1− εi)µi,∅E[hi(k)] +

K∑
k=1

3∑
i=1

2λE[y+
i (k)](E[di(k)]− qi)

≤ −
K∑
k=1

E[Θ(k)] +
K∑
k=1

3∑
i=1

βi(1− εi)µi,∅E[wi,∅(k)] +K
3∑
i=1

βi + 3Kλ,

(D.13)

which implies

L1 + L2 ≤ L3 +
K∑
k=1

3∑
i=1

βi(1− εi)µi,∅E[wi,∅(k)] + C (D.14)

where

L1 =
K∑
k=1

3∑
i=1

βi(1− εi)µi,∅E[hi(k)], L2 =
K∑
k=1

3∑
i=1

2λE[y+
i (k)](E[di(k)]− qi)

L3 = −
K∑
k=1

Θ(k), C = K

3∑
i=1

βi + 3Kλ.

Letting K →∞, we find limK→∞
L3
K ≤ limK→∞

L(~s(1))
K = 0. Dividing by 3K, we obtain

lim
K→∞

L1

3K
+ lim
K→∞

L2

3K
≤
∑3

i=1 βi(1− εi)µi,∅
∑K

k=1 E[wi,∅(k)]

3K
+

∑3
i=1 βi
3

+ λ. (D.15)

Now note that the recursion of wi,∅(k) in (5.10) has a geometric distribution with parameter θi. By

Wald’s equation, E[wi,∅(k)] = 1
θi
, (D.15) simplifies to

lim
K→∞

L1

K
+ lim
K→∞

L2

K
≤ 1

3

3∑
i=1

βi
((1− εi)µi,∅

θi
+ 1
)

+ λ. (D.16)

Furthermore, substituting for L1, L2 and noting that L1 > 0, we find

3∑
i=1

2λ(E[di(k)]− qi) lim
K→∞

∑K
k=1 E[y+

i (k)]

K
≤ 1

3

3∑
i=1

βi
((1− εi)µi,∅

θi
+ 1
)

+ λ. (D.17)
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We conclude that

lim
K→∞

∑K
k=1 E[y+

i (k)]

K
<∞, i = 1, 2, · · · ,M,

which implies the strong stability of the process y+
i (k) is satisfied [? ], [223, Theorem 2.8].

Finally, since L2 > 0, we conclude that

lim
K→∞

L1

3K
≤ 1

3

3∑
i=1

βi
((1− εi)µi,∅

θi
+ 1
)

+ λ. (D.18)

From (D.18), set βi = αi
µi,∅(1−εi) , we have

J(q) ≤ 1

3

3∑
i=1

(αi
θi

+
αi

µi,∅(1− εi)
)

+ λ.

Combining Step 1 and Step 2, we obtain the desired results (5.23).

D.5. Transmitting x2 can not be worse than transmitting x1 in terms of AoI

We first consider the case where x1 and x2 are transmitted directly. If x1 is decoded by users 1, 2,

then from Definition 21, the AoI reduction of the users 1, 2 is

α1 min{k − e(t1), h1(k − 1) + 1}+ α2 min{k − v(t2), h2(k − 1) + 1},

which is larger than the AoI reduction when x2 is decoded,

α1 min{k − e(t3), h1(k − 1) + 1}+ α2 min{k − v(t4), h2(k − 1) + 1}.

This is because α1e(t1) +α2v(t2) > α1e(t3) +α2v(t4). Then, transmitting x2 can not be worse than

transmitting x1.

Then, if the encoder transmits a coded packet which is formed by c1 = x1⊕ p or c2 = x2⊕ p, where

p ∈ Q3,S3 . Note that c1 and c2 provide the same AoI reduction to user 3. By similar analysis above,
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Figure D.2: The flow of user 1 in the virtual network under coded caching.

c2 provides a larger (weighted sum of) AoI reduction for users 1, 2. Then, encoding x2 can not be

worse than encoding x1 in terms of AoI.

Finally, we consider the case where x1 is decoded first. Suppose that x1 has been decoded within

c′1 = x1⊕ p1 and p1 ∈ Q3,S′3 . Denote the (weighted sum of) age reduction for users 1, 2 as ∆′. After

that, x2 has been decoded by c′2 = x2 ⊕ p2 and p2 ∈ Q3,S′′3 . Denote the age reduction for users 1, 2

as ∆′′. The total (weighted sum of) age reduction for users 1, 2 once decoding x1 and x2 is ∆′+∆′′.

Now, consider another coded packet formed by replacing x1 with x2 in c′1, denoted by c′′′. In this

case, the (weighted sum of) age reductions for users 1, 2 is ∆′ + ∆′′ after decoding c′′′. Therefore,

x1 is useless for users 1, 2 after decoding x2, in the next time slot, user 3 can have the same AoI

reduction by decoding the fresher packet in p1 and p2. We can conclude that encoding x2 is not

worse than encoding x1.

D.6. Proof of Theorem 19.

The proof is similar to the proof of Theorem 17 in Appendix D.4. The main difference is that we

define a new equivalent information flow graph (for user 1) in Figure D.2, where we have 8 cuts in

total. Then, by a similar process in the proof of Theorem 17 in Appendix D.4, we get the desired

results.
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D.7. Proof of Corollary 5

The proof consists of minimizing (5.34) over all rate tuples (rπ1 , . . . , r
π
M ) ∈ Ĉ where Ĉ is an outer

bound on the capacity region [153, Section III].

From [153, Section III], denote Ĉ as the channel capacity outer bound. Let π is a permutation of

[M ] such that π(M − i+ 1) = π̂(i), where π̂ is the permutation defined in [153, Definition 1]. Recall

that σ(I) is the probability that an erasure occurs for all users in I. Denote ε̂π(i) = σ(∪ij=1{π(j)}).

From [153, Lemma 3, Lemma 4], we can obtain the outer bound Ĉ = ∩πĈπ where

Ĉπ =
{

(R1, R2, · · · , RM )|
∑
i∈[M ]

Rπ(i)

1− ε̂π(i)
≤ 1
}
. (D.19)

Consider symmetric and independent channels, i.e., εi = ε for all i ∈ [M ]. From (D.19), the capacity

outer bound Ĉ is given by

Ĉ =
{

(R1, · · · , RM )|0 ≤ Ri ≤
1∑M

j=1 1/(1− εj)

}
. (D.20)

From (D.20), LBπ
1 can be re-written as

LBπ
1 =

M

2ε(M)
∑M

i=1 1/αi
+

M∑
i=1

αi
2M

.

where ε(M) = 1∑M
j=1 1/(1−εj)

.
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APPENDIX E

Proofs in Chapter 6

E.1. Proof of Lemma 13

Note that a node is counted in Cπ(t) once it has been infected. Then, on the day t+ 1, Cπ(t+ 1)

increases (compared to Cπ(t)) only because some susceptible nodes are infected by infectious nodes

and are in the latent state for the first time.

After testing, positive nodes in Kπ(t) would not infect others because they are quarantined, and

negative nodes would not infect others due to the model assumptions. Hence

Cπ(t+ 1) = Cπ(t) +
∑
i∈V(t)

Fi(V(t)\Kπ(t); t).

Taking the expectation on both sides, we obtain the desired result.

E.2. Proof of Theorem 21

To show S
(
Kπ(t); t

)
defined in (6.6) is a supermodular function. It suffices to show that for any

A ⊂ B ⊂ V(t), and for x ∈ V(t)\B, we have

S
(
A ∪ {x}; t

)
− S

(
A; t

)
≤ S

(
B ∪ {x}; t

)
− S

(
B; t
)
. (E.1)

Then, it suffices to show for any i ∈ V(t),

E[Fi
(
A ∪ {x}; t

)
]− E[Fi

(
A; t

)
] ≤ E[Fi

(
B ∪ {x}; t

)
]− E[Fi

(
B; t
)
]. (E.2)

Now, we consider three cases.

Case 1. If A∩ ∂i(t) = B ∩ ∂i(t), then from (6.5), the LHS and RHS in (E.2) are exactly the same.

Hence, (E.2) holds.

Case 2. If A∩∂i(t) ⊂ B∩∂i(t), and x /∈ ∂i, then from (6.5), fi(A∪{x}) = fi(A) and fi(B∪{x}) =
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fi(B). Hence (E.2) holds.

Case 3. If A∩ ∂i(t) ⊂ B ∩ ∂i(t), and x ∈ ∂i(t), let Y =
(
B ∩ ∂i(t)

)
\
(
A∩ ∂i(t)

)
. Here x /∈ Y. From

(6.5), we can compute

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]

= v
(i)
S (t)

∏
j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)

×
(

1−
∏

j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t))− (1− βv(x)

I (t))
(
1−

∏
j∈∂i(t)∩A

(1− βv(j)
I (t))

))
,

which implies

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]

= v
(i)
S (t)

∏
j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)

×
(
βv

(x)
I (t)−

∏
j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t)) +

∏
j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t))

))
= v

(i)
S (t)

∏
j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)
βv

(x)
I (t).

Similarly, note that
(
B ∩ ∂i(t)

)
=
(
A ∩ ∂i(t)

)
∪ Y. We have

E[Fi(B ∪ {x}; t)]− E[Fi(B; t)] = v
(i)
S (t)

∏
j∈∂i(t)\(A∪({x}∪Y))

(
1− βv(j)

I (t)
)
βv

(x)
I (t).

Thus,

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]

E[Fi(B ∪ {x}; t)]− E[Fi(B; t)]
=
∏
y∈Y

(
1− βv(y)

I (t)
)
≤ 1,

which implies S
(
T Pπ(t)

)
is supmodular.

To show S
(
Kπ(t); t

)
is an increasing monotone function on Kπ(t), it suffices to show E[Fi

(
Kπ(t); t

)
]

is an increasing monotone function on Kπ(t) for any i.
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For A ⊂ B, we have ∂i(t)\B ⊂ ∂i(t)\A, and A ∩ ∂i(t) ⊂ B ∩ ∂i(t). Then

∏
j∈∂i(t)\B

(
1− βv(j)

I (t)
)
≥

∏
j∈∂i(t)\A

(
1− βv(j)

I (t)
)

∏
j∈B∩∂i(t)

(1− βv(j)
I (t)) ≤

∏
j∈A∩∂i(t)

(1− βv(j)
I (t)),

and thus, from (6.5), we have E[Fi
(
A; t

)
] ≤ E[Fi

(
B; t
)
].

E.3. Complexity of Algorithm 5

First of all, we consider the complexity of (6.5). Suppose {vi(t)}i∈V(t) is given for every day t. For

any Kπ(t), the complexity of computing (6.5) is

1 + |∂i(t)\Kπ(t)| − 1 + 1 + |∂i(t)\Kπ(t)|+ |∂i(t) ∩ Kπ(t)| − 1 + |∂i(t) ∩ Kπ(t)| = 2|∂i(t)|.

Then, for any Kπ(t), the complexity of computing S
(
Kπ(t); t

)
is 2
∑

j∈V(t) |∂j(t)|. From Algorithm 5,

in step i, the complexity is
(
N(t)− i+ 1

)
× 2

∑
j∈V(t) |∂j(t)|. And in total we have

(
N(t)− |Kπ(t)|

)
steps, therefore, on day t the complexity of Algorithm 5 is

N(t)−|Kπ(t)|∑
i=0

2
(
N(t)− i+ 1

) ∑
j∈V(t)

|∂j(t)|.

Recall that the time horizon is T , then the total complexity of Algorithm 5 is

T−1∑
t=0

N(t)−|Kπ(t)|∑
i=0

2
(
N(t)− i+ 1

) ∑
j∈V(t)

|∂j(t)|.

Note that

N(t)−|Kπ(t)|∑
i=1

2
(
N(t)− i+ 1

)
≤O
(
N2(t)

)
∑
i∈V(t)

|∂i(t)| ≤O
(
N2(t)

)
.
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Then, the total complexity is bounded by O
(∑T−1

t=0 N4(t)
)
.

E.4. Proof of Lemma 14

As defined in [229] (an equivalent definition of footnote 3), consider a finite set I, f : 2I → R is a

supermodular function if for all X,Y ⊂ I,

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ). (E.3)

Following the supermodularity of function S(·) as shown in Theorem 21, set X = V(t)\Kπ(t) and

Y = Kπ(t) in (E.3), we have

S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
− S

(
Kπ(t); t

)
. (E.4)

Again, set X = Kπ(t)\{i} and Y = {i} in (E.3), and use (E.3) repeatedly to obtain:

S
(
Kπ(t); t

)
≥

∑
i∈Kπ(t)

S
(
{i}; t

)
=

∑
i∈Kπ(t)

ri(t). (E.5)

Substituting (E.5) in (E.4), we obtain

S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
−

∑
i∈Kπ(t)

ri(t).

E.5. Local Transition Equations

In this section, we will describe the local transition matrix Pi
(
{vj(t)}j∈∂+

i (t)

)
used in (6.12). The

state of each node evolves as follows: (i) if node i is susceptible on day t, then it might be infected

by its neighbors in ∂i(t); (ii) an infectious node remains in the latent state with probability 1− λ,

and changes state to the infectious state (I) with probability λ; (iv) if node i is in state I, it will

recover after a geometric distribution with parameter γ. Let ξi(t) = 1−
∏
m∈∂i(t)

(
1−v(m)

I (t)β
)
. In

particular, define ξi(t) = 0 if ∂i(t) = ∅. Then, the probabilities of nodes being in different states
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evolve in time as follows:

v
(i)
I (t+ 1) =v

(i)
I (t)(1− γ) + v

(i)
L (t)λ (E.6)

v
(i)
L (t+ 1) =v

(i)
L (t)(1− λ) + v

(i)
S (t)ξi(t) (E.7)

v
(i)
R (t+ 1) =v

(i)
R (t) + v

(i)
I (t)γ (E.8)

v
(i)
S (t+ 1) =v

(i)
S (t)

(
1− ξi(t)

)
. (E.9)

Note that row vector vi(t) is defined in (6.3). Collecting (E.6) - (E.9), we define the local transition

probability matrix as given below:

Pi
(
{vj(t)}j∈∂+

i (t)

)
=



(1−γ) 0 γ 0

λ 1−λ 0 0

0 0 1 0

0 ξi(t) 0 1− ξi(t)


. (E.10)

and we obtain (6.12).

E.6. Proofs of (6.13) and (6.14)

First of all, we give the following definition.

Definition 28. Let X be a random variable and B be an event. Define X|B as the random variable

X given B; i.e.,

Pr
(
X|B = x

)
= Pr

(
X = x|B

)
. (E.11)

For brevity, let us define θi(t) = σi(t)|{Y (τ)}t−1
τ=1

, ζi(t) = σi(t)|{Y (τ)}tτ=1
. We thus have

u(i)
x (t) = Pr

(
θi(t) = x

)
, w(i)

x (t) = Pr
(
ζi(t) = x

)
.
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Recall that vi(t) =
[
v

(i)
x (t)

]
x∈X , v

(i)
x (t) = Pr

(
σi(t) = x

)
. Then, (6.12) can be re-written as

Pr
(
σi(t+ 1) = x′i

)
= Pr

(
σi(t) = xi

)
Pi

(
{σj(t)}j∈∂+

i (t) = {xj}j∈∂+
i (t)

)
, (E.12)

where x′i, {xj}j∈∂+
i (t) ∈ X . Conditioning both sides of (E.12) on {Y (τ)}t−1

τ=1, state variables σi(t)

and σi(t− 1) in (E.12) can be replaced by θi(t) and ζi(t− 1), respectively, to obtain

ui(t) = wi(t− 1)× Pi
(
{wj(t− 1)}j∈∂+

i (t−1)

)
, (E.13)

which gives (6.13). In addition, define φi(t) = σi(t)|{Y (τ)}t+1
τ=1

, and

ei(t− 1) = (e(i)
x (t− 1), x ∈ X ),

e(i)
x (t− 1) = Pr

(
φi(t− 1) = x

)
.

(E.14)

This notation implies

φi(t− 1) = θi(t− 1)|Y (t). (E.15)

Similarly, conditioning both sides of (E.13) on Y (t), we find

wi(t) = ei(t− 1)× P̃i
(
{ej(t− 1)}j∈∂+

i (t−1)

)
, (E.16)

which gives (6.14). P̃i({ej(t− 1)}j∈∂+
i (t−1)) is obtained in the following subsection.

E.6.1. Computing the transition probability matrix P̃i({ej(t− 1)}j∈∂+
i (t−1))

Note that P̃i({ej(t − 1)}j∈∂+
i (t−1)) is not the same as Pi({wj(t)}j∈∂+

i (t)). This is because “future”

observations were available in P̃i({ej(t− 1)}j∈∂+
i (t−1)). To get P̃i

(
{ej(t− 1)}j∈∂+

i (t−1)

)
, we split the

nodes V(t) into two classes of nodes: (i) nodes that do not get new observations and (ii) nodes that

get new observations. P̃i({ej(t− 1)}j∈∂+
i (t−1)) is obtained by the following rules. For the first class

of nodes, the local transition matrix in (E.16), i.e., P̃i({ej(t− 1)}j∈∂+
i (t−1)), is the same as that in
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(E.13). However, for the second class of nodes, the local transition matrices are changed accordingly

because of the new observations. Let [A]{i,:} be the ith row of matrix A, and qi be a 1 × 4 vector

with the ith element being one and the rest zero. For brevity, denote the local transition matrices

in (E.13) and (E.16) by Pi(t− 1) and P̃i(t− 1), respectively. We have the following three cases:

(i) If node i is not observed, then node i does not have new observation and we have

P̃i(t− 1) = Pi(t− 1). (E.17)

(ii) If Yi(t) = 0, then node i is not infectious in day t with probability 1. The local transition

matrix is changed to

[P̃i(t− 1)]{j,:} =


q3 j = 1

q2 j = 2

[Pi(t− 1)]{j,:} otherwise

. (E.18)

(iii) If Yi(t) = 1, then node i is infectious in day t with probability 1. The local transition matrix

is changed to

[P̃i(t− 1)]{j,:} =


q1 j = 1

q1 j = 2

[Pi(t− 1)]{j,:} otherwise

. (E.19)

E.7. Proofs of (6.16) and (6.17)

Using new observations, we aim to move backward in time and update our belief (posterior prob-

ability) in previous time slots. Define a truncation number g and suppose that {Y (t)} affects the

posterior probabilities from day t to day t − g. We call day t − g the truncation day associated

with day t. To get accurate posterior probabilities every day, we need to set g = t on every day t
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and track back to the initial time. However, the influence weakens as time elapses backward, and

for computation tractability, we continue under the following assumption where g = 1. Recall that

ζi(t) = σi(t)|{Y (τ)}tτ=1
.

Assumption 9. On the truncation day (t−g), {ζi(t−g)}i are independent over i. In the following,

the truncation number is assumed to be g = 1.

Remark 30. In Assumption 9, we assume that the nodes’ states ζ(t−g) (in the posterior probability

space on the day t − g) are independent. This assumption is only used at time t of our probability

update in a moving window kind of way. It provides us with a truncation time for each backward

step. In particular, under Assumption 9, once we get the observations Y (t), we do the backward

step and truncate at time t − g. For example, in the trivial case of g = t, the assumption holds.

This assumption does not impose independence on the state of the nodes, but only in the posterior

space at a specific time. In a sense, in the process of propagating information back to time t− g, we

are assuming that there is no further correlation between time t − g − 1 and time t − g worthwhile

to exploit given observations at time t. Naturally, as g gets larger and larger, our framework and

calculations become more precise but this comes at a huge computational cost. The idea behind

truncating the backward step lies in the observation that the impact of the testing results at time t

in inferring about the nodes’ probabilities at time t − g vanishes as g gets large. For simplicity of

derivations and to have manageable complexity, we set g = 1. The idea and the derivations can be

generalized in a straightforward manner to larger g.

Note that the posterior probabilities on the day t − 1, wi(t − 1), i ∈ V(t − 1), are assumed known

(and are conditioned on the history of observations {Y (τ)}t−1
τ=1). The probability vector ei(t − 1)

is the new posterior probability at time t − 1 which is updated (from wi(t − 1)) based on new

observations Y (t). In other words, we infer the previous state of the nodes given new observations

at present.

To obtain {wi(t)}i∈V(t), it suffices to obtain ei(t− 1) and the corresponding local transition matrix

P̃i
(
{ej(t−1)}j∈∂+

i (t−1)

)
, see (6.14). Note that the posterior probabilities wi(t−1), i ∈ V(t−1), which
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are calculated based on Y (t− 1), are known. The vector ei(t− 1) is the new posterior probability

which is updated based on Y (t) and wi(t− 1).

Equation (6.16), which we aim to prove, simply follows from Definition 28, (E.14)-(E.15), and Bayes

rule:

e(i)
x (t− 1) = Pr

(
ζi(t− 1) = x|Y (t)

)
=

Pr
(
Y (t)|ζi(t− 1) = x

)
w

(i)
x (t− 1)

Pr
(
Y (t)

) . (E.20)

To find Pr
(
Y (t)|ζi(t − 1) = x

)
, and establish (6.17), we now proceed as follows. We introduce

{θj(t)}j∈O(t) into (E.20). In particular, we have

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

Pr
(
{θj(t)}j∈O(t), Y (t)|ζi(t− 1) = x

)

By the chain rule of conditional probability,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
× Pr

(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
.

From (6.15), {ζj(t)}j∈V(t) and {θj(t)}j∈V(t) are variables defined by {σj(t)}j∈V(t) in posterior spaces

of {Y (τ)}tτ=1 and {Y (τ)}t−1
τ=1, respectively. Since Y (t) is a deterministic function of {σj(t)}j∈O(t),

and hence {θj(t)}j∈O(t), then Y (t) is independent of ζi(t − 1) given {θj(t)}j∈O(t). In addition, the

testing result Yj(t) (on day t) of node j only depends on its state, i.e., given θj(t), the testing results

are determined. Therefore, we have

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
= Pr

(
Y (t)|{θj(t)}j∈O(t)

)
=

∏
j∈O(t)

Pr
(
Yj(t)|θj(t)

)
.

The product above is an indicator that takes values on {0, 1}. We can thus re-write it as follows:

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
, δ({Yj(t), θj(t)}j∈O(t)).

where δ({Yj(t), θj(t)}j∈O(t)) = 1 if the pairs {Yj(t), θj(t)}j∈O(t) are consistent, and δ({Yj(t), θj(t)}j∈O(t)) =
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0 otherwise.

Next, define

Θi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ O(t)}\{i}

to represent the neighbors (in day t− 1) of nodes in O(t) excluding node i. Then,

Pr
(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
=

∑
ζl(t−1), l∈Θi(t)

Pr
(
{θj(t)}j∈O(t), {ζl(t−1)}l∈Θi(t)|ζi(t− 1) = x

)
.

(E.21)

By the chain rule of conditional probability,

Pr
(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
=

∑
ζl(t−1), l∈Θi(t)

Pr
(
{θj(t)}j∈O(t)|{ζl(t−1)}l∈Θi(t), ζi(t− 1) = x

)
× Pr

(
{ζl(t−1)}l∈Θi(t)|ζi(t− 1) = x

)
.

Given {ζl(t− 1)}l∈Θi(t) ∪ {ζi(t− 1)}, {θj(t)}j∈O(t) are independent. We thus have

Pr
(
{θj(t)}j∈O(t)|{ζl(t− 1)}l∈Θi(t), ζi(t− 1) = x

)
=
∏

j∈O(t)

Pr
(
θj(t)|{ζl(t− 1)}l∈Θi(t), ζi(t− 1) = x

)
=
∏

j∈O(t)

Pr
(
θj(t)|{ζl(t−1)}l∈∂+

j (t−1)\{i}, ζi(t−1) = x
)
.

Based on Assumption 9,

Pr
(
{ζl(t− 1)}l∈Θi |ζi(t− 1) = x

)
=
∏

l∈{Θi(t)}

Pr
(
ζl(t− 1)

)
.
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Therefore,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

δ({Yj(t), θj(t)}j∈O(t))

×
∑

ζl(t−1)

∏
j∈O(t)

Pr
(
θj(t)|{ζl(t−1)}l∈∂+

j (t−1)\{i}, ζi(t− 1) = x
)
×

∏
l∈{Θi(t)}

Pr
(
ζl(t− 1)

)
.

(E.22)

Denote {xj}j∈O(t) as a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) as a realization of {ζl(t−1)}l∈Θi(t).

Then,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
{xj}j∈O(t)

δ({Yj(t), xj}j∈O(t))

×
∑

{yl}l∈Θi(t)

∏
j∈O(t)

Pr
(
xj |{yl}l∈∂+

j (t−1)\{i}, ζi(t− 1) = x
)
×

∏
l∈{Θi(t)}

Pr
(
ζl(t− 1) = yl

)
.

Denote

ρ
(
{xj}j∈O(t), x

)
=

∑
{yl}l∈Θi(t)

∏
j∈O(t)

Pr
(
xj |{yl}l∈∂+

j (t−1)\{i}, ζi(t− 1) = x
)
×

∏
l∈Θi(t)

Pr
(
ζl(t− 1) = yl

)
.

(E.23)

Then,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
xj∈X ,j∈O(t)

δ({Yj(t), xj}j∈O(t))ρ
(
{xj}j∈O(t), x

)
. (E.24)

Based on Assumption 9, we can further simplify (E.24). Consider node i, Y (t) can be split into

Y i,1(t) and Y i,2(t), where Y i,1(t) is the observations of the set O(t) ∩ ∂+
i (t− 1), and Y i,2(t) is the

observations of the rest of the nodes. Note that Y i,1(t) ∪ Y i,2(t) = Y (t) and Y i,1(t) ∩ Y i,2(t) = ∅.

Lemma 20. Conditioned on Y i,1(t), ζi(t− 1) is independent of Y i,2(t).

Proof. To show Lemma 20, we use the structured belief network as defined in [247]. ζj(t) is the

random variable associated with node j. Note that Yj(t) is the test result of ζj(t) on day t. Now,
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we consider j ∈
(
O(t)\(O(t) ∩ ∂+

i (t− 1))
)
. By [247, Theorems 1] and Bayes ball algorithm defined

in [248, Section 2], we investigate the following two cases.

(i) For any j ∈
(
O(t)\(O(t) ∩ ∂+

i (t − 1))
)
with Yj(t) = 1, the corresponding state ζj(t) is

determined (which is I). Then, probabilities conditioning on Yj(t) is equivalent to (equal

to) probabilities conditioning on ζj(t). By Bayes ball algorithm [247, 248], the information

(the ball) is blocked at ζj(t) when the information (the ball) reaches ζj(t), which implies the

information (the ball) can not reach ζi(t− 1).

(ii) For any j ∈
(
O(t)\(O(t) ∩ ∂+

i (t− 1))
)
with Yj(t) = 0, ζj(t) is not determined. By Bayes ball

algorithm [247, 248], when the information (the ball) reaches ζj(t), it can traverse Yj(t) when

blocking Yj(t) (conditioning on Yj(t)). However, by Assumption 9, ζi(t − 1) and ζj(t − 1)

are independent, so any path between ζi(t − 1) and ζj(t − 1) is blocked, including the path

ζj(t− 1)↔ ζj(t)↔ Yj(t)↔ ζj(t)↔ ζi(t− 1). Thus, the information (the ball) can not reach

ζi(t− 1).

A simple example is given in Figure E.1: Let Y1(t) = 0 and Y2(t) = 1. Given Y1(t) and Y2(t), Y3(t)

is independent of ζ1(t− 1).

Figure E.1: Bayes ball algorithm in the network of 3 nodes. The terms on which we have conditioning
are shaded gray and are equivalently blocked.
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From Lemma 20,

e(i)
x (t− 1) = Pr

(
ζi(t− 1) = x|Y (t)

)
= Pr

(
ζi(t− 1) = x|Y i,1(t)

)
. (E.25)

We simplify (E.24) based on Lemma 20 or (E.25). From (E.25), denote the observations of nodes in

∂+
i (t− 1) as Y ∂+

i
(t), Y ∂+

i
(t) is independent of ζi(t− 1). Denote Ψi(t) = O(t)∩∂+

i (t− 1). Then, We

can replace O(t) by Ψi(t) in (6.16). Subsequently, denote Φi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ Ψi(t)}\{i},

and we can replace Θi(t) by Φi(t) in (E.21). Thus, from (E.23) and (E.24), we respectively have

ρ
(
{xj}j∈Ψi(t), x

)
=

∑
{yl}l∈Φi(t)

∏
j∈Ψi(t)

Pr
(
xj |{yl}l∈∂+

j (t−1)\{i}, ζi(t− 1) = x
)
×

∏
l∈Φi(t)

Pr
(
ζl(t− 1) = yl

)
(E.26)

and

Pr
(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
xj∈X ,j∈Ψi(t)

δ({Yj(t), xj}j∈Ψi(t))ρ
(
{xj}j∈Ψi(t), x

)
(E.27)

which give the desired result (6.17).

E.8. A Simple Example for Algorithm 8

In this section, we give a simple example to illustrate the ideas and steps of Algorithm 8. Besides,

we compare our proposed algorithm (Algorithm 8) with the Naive approach discussed in Remark 28.

Consider a simple network with three nodes. Node 1 has an edge with node 2, and node 2 has an

edge with node 3 (see Fig E.2). Nodes 1 and 3 are symmetric and statistically identical, and node 2

has a higher degree.

Consider the following situation: on the initial day (day 0), assume that nodes 1 and 3 are suscep-

tible, and node 2 is infectious. On day 1, let node 2 be tested. Recall that we define the posterior

probability vectors at the end of every day, and the prior probability vectors at the beginning of

every day. Nodes’ states change at the beginning of every day and testing is also done at the begin-

ning of every day. Let the initial belief, i.e., the posterior probability wi(0) and the prior probability
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Figure E.2: The original graph (left). The graphical model of states and observations (right)

ui(0) on day 0, of the nodes be

wi(0) = [1/3, 0, 0, 2/3], i = 1, 2, 3

ui(0) = [1/3, 0, 0, 2/3], i = 1, 2, 3.

Day 0: No tests on day 0, the prior probabilities are updated by the forward step (Step 2 in

Algorithm 8).

Day 1: By Step 2 in Algorithm 8, we have

u1(1) = [0.3144, 0.0373, 0.0633, 0.5849]

u2(1) = [0.3559, 0.0676, 0.0633, 0.5131]

u3(1) = [0.3144, 0.0373, 0.0633, 0.5849].

After testing node 2, we know that node 2 is positive. We use the test result to infer the state of

the nodes in prior times. In particular, we update the posterior probability on the day 0 (wi(0)).
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Denoting the updated posterior probability as ei(0), by Step 1 in Algorithm 8, we find

e1(0) = [0.3144, 0.0373, 0.0633, 0.5849]

e2(0) = [0.9615, 0.0385, 0.0, 0.0]

e3(0) = [0.3144, 0.0373, 0.0633, 0.5849].

We can now say that at the end of the day 0, node 2 was infectious with probability 0.9615 and

it was in the latent state with probability 0.0385. Moreover, we see that the (posterior) infection

probabilities of nodes 1 and 3 on day 0 have increased since they may have infected node 2 on day 0,

i.e., 0.3517 = e
(i)
I (0) + e

(i)
L (0) > 1/3 = w

(i)
I (0) +w

(i)
L (0) with i = 1, 3. Next, we obtain the posterior

probability on day 1. Recall that wi(t) describes the posterior probability vector of node i at the

end of day t. By Step 1 in Algorithm 8,

w1(1) = [0.4008, 0.0, 0.1268, 0.4724]

w2(1) = [0.90, 0.0, 0.10, 0.0]

w3(1) = [0.4008, 0.0, 0.1268, 0.4724].

One may wonder why the posterior probability is [0.9, 0, 0.1, 0] rather than [1, 0, 0, 0]. This is because

testing is done at the beginning of time t and the posterior probabilities are defined at the end of

time slots t. The infected node may have recovered by the end of time t = 1 and this is reflected in

the posterior probabilities computed.

Day 2: We can get the prior probability vectors on the day 2 by our forward update (making

predictions):

u1(2) = [0.2883, 0.0, 0.1268, 0.5849]

u2(2) = [0.8135, 0.0, 0.1865, 0.0]

u3(2) = [0.2883, 0.0, 0.1268, 0.5849].
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On the other hand, if we apply the naive updating rule defined in Remark 28, on day 2, we find

u′1(2) = [0.4074, 0.0896, 0.0948, 0.4082]

u′2(2) = [0.81, 0.0, 0.19, 0.0]

u′3(2) = [0.4074, 0.0896, 0.0948, 0.4082].

Recall that we use Assumption 9 in the proposed algorithm (Algorithm 8), and the Naive approach

in Remark 28 does not have the backward step, so both approaches do not capture the correlations

among nodes. By Monte Carlo simulations, the correlations among nodes are captured, and the

nodes’ probability vectors are approximated on day 2 as follows:

v1(2) = [0.3235, 0.0976, 0.0196, 0.5593]

v2(2) = [0.7244, 0, 0.2756, 0]

v3(2) = [0.3158, 0.1072, 0.019, 0.558]

which yields the following comparison of the incurred estimation errors:

0.4342 =
3∑
i=1

||ui(2)− vi(2)|| <
3∑
i=1

||u′i(2)− vi(2)|| = 0.5018.

The lef- hand side shows the estimation error under our proposed backward-forward update and

the right-hand side shows the estimation error under the naive approach.

E.9. Delay of Testing Results

One can extend the framework to a more realistic case where testing results are not able to be

obtained on the same day but will be obtained after a delay a. In other words, if nodes are tested

on day t − a, the test results are provided on day t. The extended framework is summarized as

follows.

On day t, before getting the test results of day t − a, the algorithm knows the following in-
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formation: (i) the network topology from day t − a − 1 to day t, i.e., G(t − a − 1), · · · ,G(t)

(it is affected by the past actions); (ii) the posterior probability of nodes on day t − a − 1,{
wi(t − a − 1)

}
i∈G(t−a−1)

; and (iii) and the prior probability vectors of nodes from day t − a

to day t, i.e.,
{
ui(t− a)

}
i∈G(t−a)

, · · · ,
{
ui(t)

}
i∈G(t)

.

After getting the test results on day t− a, we can obtain the updated posterior probability vectors

on day t− a− 1, and the posterior probability vectors on day t− a, i.e.,
{
ei(t− a− 1)

}
i∈G(t−a−1)

,

and
{
wi(t− a)

}
i∈G(t−a)

, by Step 1 in Algorithm 8.

Based on {w(t− a)}i∈G(t−a), by Step 2 in Algorithm 8, we update the prior probability from day

t− a+ 1 to day t, and obtain the prior probability on day t+ 1, i.e., {ui(t+ 1)}i∈G(t+1).

Repeating the process, we can compute the estimated probability vectors of nodes and apply the

exploration and exploitation policies.

E.10. Proof of Theorem 22

Step 1: Preliminaries.

We divide the distributions of initial infectious nodes into two complementary events:

I1 ={No node is infectious}

I2 =Ic1.

Let N be sufficiently large,

Pr{I1} = (1− 1/N)N ≈ 1/e

Pr{I2} ≈ 1− 1/e.

In event I1, since there is no infection on the initial day, then no node is infectious in the future,

i.e., the true probability of nodes v(i)
I (t) = 0 for all i ∈ V(t) and t ≥ 1.
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Note that in Example 3, each node can be in one of two states, S and I. The transmission probability

β = 1. So, on day t, the probability of node i being in state I includes the infection of node i on

day t− 1, and the infection from its neighbors. Then, based on (6.13), we have

u
(i)
I (t) =w

(i)
I (t− 1) + {1− w(i)

I (t− 1)}
{

1−
(
1− w(i−1)

I (t− 1)
)(

1− w(i+1)
I (t− 1)

)}
=1− {1− w(i−1)

I (t− 1)}{1− w(i)
I (t− 1)}{1− w(i+1)

I (t− 1)}.
(E.28)

For convention, we assume that nodes 0 and N + 1 are two virtual nodes with no probability of

infection, i.e., u(0)
I (t) = u

(N+1)
I (t) = 0 for all t, and no tests are applied to these two nodes all the

time.

Since w(i)
I (t+ 1), w

(i−1)
I (t+ 1), w(i+1)

I (t+ 1) ∈ [0, 1], then from (E.28),

u
(i)
I (t) ≥ 1− 1× (1− w(i)

I (t− 1))× 1 = w
(i)
I (t− 1). (E.29)

Thus, by symmetry over w(i−1)
I (t− 1), w(i)

I (t− 1), and w(i+1)
I (t− 1) we get the inequality

u
(i)
I (t) ≥ max{w(i−1)

I (t− 1), w
(i)
I (t− 1), w

(i+1)
I (t− 1)}. (E.30)

Step 2: Consider the computation of {ui(t)}i based on (6.13)
(
equivalently (E.28)

)
under event I1.

Recall that B(t) = 1 for all t. On any day t, if node i0 is tested, then the result is negative, and

w
(i0)
I (t) = 0, and

w
(i)
I (t) = u

(i)
I (t) for all i 6= i0. (E.31)

In (E.30), at most one of w(i−1)
I (t− 1), w(i)

I (t− 1), and w(i+1)
I (t− 1) is updated to 0. We first prove

the following facts.

Fact 1. u(i)
I (t) ≥ 1

N for all t. On any day t, w(i)
I (t) ≥ 1

N with i 6= i0, where i0 is the index of node

tested on day t.
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Proof. We prove Fact 1 by mathematical induction. On the initial day, by model assumption in

Example 3, u(i)
I (0) = 1

N for all i. Then, if node i0 is tested, then as mentioned above, w(i0)
I (0) = 0,

and by (E.31) w(i)
I (0) = u

(i)
I (0) = 1/N for all i 6= i0.

Suppose Fact 1 holds for all τ ≤ t − 1. Now, we consider τ = t. From (E.30), we have u(i)
I (t) ≥

max{w(i−1)
I (t−1), w

(i)
I (t−1), w

(i+1)
I (t−1)} ≥ 1/N . Then, if node i0 is tested, we have w(i0)

I (t) = 0,

and then by (E.31), w(i)
I (t) = u

(i)
I (t) ≥ 1/N for all i 6= i0.

Fact 2. If node i has not been tested up to day t, then u(i)
I (t) tends to 1 as t→∞.

Proof. Since node i is not tested from the initial day to day t, then

w
(i)
I (τ) = u

(i)
I (τ), τ ≤ t. (E.32)

Note that at most one of its neighbors is tested on the day t. By (E.28) and Fact 1,

u
(i)
I (t) ≥ 1− (1− 1/N)(1− w(i)

I (t− 1)) = 1− (1− 1/N)(1− u(i)
I (t− 1)), ,

which implies

(1− 1/N)(1− u(i)
I (t− 1)) ≥ 1− u(i)

I (t),

which implies

1− u(i)
I (t) ≤ (1− 1/N)t(1− u(i)

I (0)) = (1− 1/N)t+1.

Letting t→∞ completes the proof.

Fact 3. If node i is not tested on day t− 1, then

u
(i)
I (t) ≥ w(i)

I (t− 1) +
1

N
(1− w(i)

I (t− 1))w
(i)
I (t− 1).
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Proof. By Fact 3, if node i is not tested on day t− 1, then w(i)
I (t− 1) > 0. From (E.28), by some

algebra,

u
(i)
I (t) =w

(i)
I (t− 1) + (1− w(i)

I (t− 1))(w
(i−1)
I (t− 1) + w

(i+1)
I (t− 1)− w(i−1)

I (t− 1)w
(i+1)
I (t− 1))

=(1 + ε)w
(i)
I (t− 1)

where

ε =
1− w(i)

I (t− 1)

w
(i)
I (t− 1)

× (w
(i−1)
I (t− 1) + w

(i+1)
I (t− 1)− w(i−1)

I (t− 1)w
(i+1)
I (t− 1)).

Note that at most one of the neighbors of the node i is tested on the day t− 1, then

1− w(i)
I (t− 1)

w
(i)
I (t− 1)

≥1− w(i)
I (t− 1)

w
(i−1)
I (t− 1) + w

(i+1)
I (t− 1)− w(i−1)

I (t− 1)w
(i+1)
I (t− 1) ≥max{w(i−1)

I (t− 1), w
(i+1)
I (t− 1)}.

From Fact 1, max{w(i−1)
I (t− 1), w

(i+1)
I (t− 1)} ≥ 1/N . Thus, ε ≥ (1− w(i)

I (t− 1))× 1/N . Hence,

u
(i)
I (t) ≥ w(i)

I (t− 1) + 1
N (1− w(i)

I (t− 1))w
(i)
I (t− 1).

Since we consider all possible sequential testing policies, then we divide all nodes into two sets

S1(t) ={nodes that have not been tested up to day t}

S2(t) =Sc1(t).

In the following proof, let t → ∞. By Fact 2, u(i)
I (t) → 1 if i ∈ S1(t). Next, we focus on the set

S2(t). Denote the index of node which is tested on the day t−1 as i0(t). By Fact 1, w(i)
I (t−1) ≥ 1/N

for all i 6= i0(t). Then, we define

S21(t) ={i|1/N ≤ w(i)
I (t− 1) < 1− 1/N}

S22(t) ={i|1− 1/N ≤ w(i)
I (t− 1)}.
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Thus, we have S2(t) = S21(t) ∪ S22(t) ∪ {i0(t)}. Due to the equivalence of norms, without loss of

generality, we consider L1 norm in the rest of the proof.

(i) If i ∈ S1(t), then u(i)
I (t)→ 1. Thus ‖ui(t)− vi(t)‖1 → 2.

(ii) If i ∈ S21(t), then ‖ui(t)− vi(t)‖1 ≥ ‖ui(t− 1)− vi(t− 1)‖1 + 2(N−1)
N3 . In fact, since i ∈ S21(t),

then i 6= i0(t), thus by (E.31) and Fact 3,

u
(i)
I (t) ≥ u(i)

I (t− 1) +
1

N
(1− w(i)

I (t− 1))w
(i)
I (t− 1).

Note that N is sufficiently large, so 1/N < 1/2 < 1 − 1/N . If x ∈ [1/N, 1 − 1/N), then the

fuction f(x) = x(1− x) has the minimum value N−1
N2 when x = 1/N . Thus,

u
(i)
I (t) ≥ u(i)

I (t− 1) +
N − 1

N3
. (E.33)

Recall that v(i)
I (t) = 0 and v(i)

S (t) = 1 for all t, and u(i)
I (t) + u

(i)
S (t) = 1, then

‖ui(t)− vi(t)‖1 = |u(i)
I (t)− v(i)

I (t)|+ |u(i)
S (t)− v(i)

S (t)| = 2|u(i)
I (t)− v(i)

I (t)|. (E.34)

From (E.33),

‖ui(t)− vi(t)‖1 = 2|u(i)
I (t)− v(i)

I (t)| ≥ 2|u(i)
I (t− 1) +

N − 1

N3
− v(i)

I (t− 1)|

≥ 2|u(i)
I (t− 1)− v(i)

I (t− 1)|+ 2(N − 1)

N3
= ‖ui(t− 1)− vi(t− 1)‖1 +

2(N − 1)

N3
.

(iii) If i ∈ S22(t), then node i is not tested on day t, thus from (E.30), u(i)
I (t) ≥ w(i)

I (t−1) = 1−1/N .

Thus, by (E.34), ‖ui(t)− vi(t)‖1 ≥
2(N−1)
N .

Since we consider N sufficiently large, then we can prove the following lemma.

Lemma 21. limt→∞ S21(t) = ∅.
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Proof. We first prove the following Claims.

Claim 1. If (i) u(i−1)
I (t) ≥ 1−1/N and node i−1 is not tested on day t, or (ii) u(i+1)

I (t) ≥ 1−1/N

and node i + 1 is not tested on day t, or (iii) u(i−1)
I (t) ≥ 1 − 1/N and u(i+1)

I (t) ≥ 1 − 1/N , then

u
(i)
I (t+ 1) ≥ 1− 1/N .

Proof. By (E.28) and (E.31), we can derive u(i)
I (t+ 1) ≥ 1− 1/N directly.

Claim 2. No node can stay in S21(t) for successive
⌈
N3/(N − 1)

⌉
days.

Proof. if node i stays in S21(t) for successive
⌈
N3/(N − 1)

⌉
days, i.e., from day τ to day τ +⌈

N3/(N − 1)
⌉
, then by (E.33), u(i)

I (τ +
⌈
N3/(N − 1)

⌉
) > 1, which contradicts with u(i)

I (t) ≤ 1 for

all t.

Now, we prove the lemma by contradiction. Based on Claim 2, assume there exists at least one j

and an increasing sequence {ti}∞i=0 with limn→∞ tn =∞, such that j ∈ S21(ti) for all {ti}∞i=0.

For some i, node j is in S22(ti− 1) on day ti− 1, and node j is in S21(ti) on day ti. In other words,

u
(j)
I (ti) < 1− 1/N ≤ u(j)

I (ti− 1). From (E.28) and Calim 1, u(j)
I (ti) < 1− 1/N ≤ u(j)

I (ti− 1) holds

only because node j is tested on day ti − 1, and all of its neighbors (i.e., nodes j − 1, j + 1) have

u
(j−1)
I (ti − 1) < 1− 1/N and u(j+1)

I (ti − 1) < 1− 1/N . However, since u(j)
I (ti − 1) ≥ 1− 1/N and

node j is tested on day ti − 1, then by Claim 1, u(j−1)
I (ti) ≥ 1 − 1/N and u(j+1)

I (ti) ≥ 1 − 1/N .

Subsequently, by Claim 1, we have u(j)
I (ti + 1) ≥ 1− 1/N . Thus, on day ti + 1, at least one of its

neighbors, say j − 1, has u(j−1)
I (ti + 1) ≥ 1 − 1/N . By Claim 1, node j never fall into S21(t) for

t ∈ {ti+1, ti+2, · · · }, which contradicts with the assumption.

From Lemma 21, when t → ∞, we have |S1(t)| = Θ(N) or |S22(t)| = Θ(N). Thus,
∑N

i=1 ‖ui(t) −

vi(t)‖1 = Θ(N).

Step 3: Consider the computation of {ui(t)}i based on Algorithm 8.

In this step, we consider a specific testing policy: We test node i on day k, where k ≡ i−1(mod M)

for all 1 ≤ i ≤M .
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In event I2, since the transmission probability β = 1, then all nodes are infected at most N days

because there is no recovery. Thus, no node with a positive testing result is repeatedly tested. So in

at most 2N days, all nodes are infectious, and the algorithm finds all infected nodes, so ui(t) = vi(t),

t ≥ 2N .

In event I1, whenever a node is tested, it is negative. Node 1 is tested on day 0, the result is

negative. On day 1, node 2 is tested and the result is negative. By backward updating, since β = 1

and no recovery, then nodes 1&3 are inferred to be in state S on day 0. Since node 2 is in state S

on day 1. Then, node 1 is inferred in state S on days 0 and 1.

Assume that nodes 1, 2, · · · , k− 2 are inferred to be in state S by day k− 1. Now, we day k, where

k ≤ N . On day k, node k − 1 is tested negative, hence by backward updating, nodes k − 2 and

k are inferred to be in state S on day k − 1. By the testing result of node k − 1 on day k, nodes

1, 2, · · · , k− 1 are inferred in state S by day k. By induction, after N days, it clears every node, so

ui(t) = vi(t), t ≥ N .

From Steps 1∼3, we complete the proof.

E.11. α-linking Backward Updating

E.11.1. Complexity Reduction

Let {xj}j∈O(t) be a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) be a realization of {ζl(t− 1)}l∈Θi(t).

Let node i have state x in day t− 1. Consider one node k ∈ ∂+
j (t− 1)\{i} and the probability

Pr
(
xj |{yl}l∈∂+

j (t−1)\{i}, x
)
, j ∈ Ψi(t).

Since node k is not infectious if yk = L, yk = R or yk = S, then the probability above remains the

same no matter whether yk = L, yk = R or yk = S.
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Thus, we introduce a new state, denoted by E, to be a replacement of {L,R, S}, and

Pr
(
yk = E

)
=

∑
x∈{L,R,S}

Pr
(
yk = x

)
.

Next, denote X ′ = {I, E}. Equation (6.17) can be re-written as follows:

Pr
(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
{xj}j∈Ψi(t)

∏
j∈Ψi(t)

Pr
(
Yj(t)|θj(t)

)
×

∑
{yl}l∈Θi(t)

∏
j∈Ψi(t)

Pj
(
xj |{yl}l∈∂+

j (t−1)\{i}, x
)

×
∏

zl∈X ′,l∈Θi(t)

Pr
(
ζl(t− 1) = zl

)
,

(E.35)

with reducing the computation complexity. Subsequently, ei(t − 1) in (6.16) can be calculated by

(E.35) directly.

E.11.2. α-linking Backward Updating

In the backward step, the computation complexity is large even in (E.35). To further reduce the

complexity in (E.35), one way is to update the posterior probability ei(t) in a sparser network. Now,

we define α-linking Backward Updating as follows:

(i) We generate a subgraph Gα(t) based on the pre-determined graph G(t): Suppose that each

edge (in G(t)) exists with probability α, 0 ≤ α ≤ 1. If α = 1, then Gα(t) = G(t); if α = 0,

then Gα(t) is a graph with no edges.

(ii) Backward updating in Gα(t): Similar with ∂i(t), Ψi(t), Φi(t) and Θi(t), we define ∂i,α(t),

Ψi,α(t), Φi,α(t) and Θi,α(t) on graph Gα(t), respectively. Subsequently, replace ∂i(t), Ψi, Φi(t)

and Θi(t) by ∂i,α(t), Ψi,α(t), Φi,α(t) and Θi,α(t) in (E.35), respectively.

E.12. Proof of Theorem 23

Step 1. Preliminaries.

In Example 4, β = 1, λ = 0, and γ = 0, there is no recovery and we assume no latent state.
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Based on (6.9), the expression of rewards r̂i(t) for every node is given as follows. If node i has two

neighbors (without quarantine)

r̂i(t) =u
(i−1)
S (t)(1− u(i−2)

I (t))u
(i)
I (t) + u

(i+1)
S (t)(1− u(i+2)

I (t))u
(i)
I (t). (E.36)

If node i only has one neighbor, then

r̂i(t) =u
(i+d)
S (t)

(
1− u(i+2d)

I (t)
)
u

(i)
I (t), d ∈ {−1, 1}. (E.37)

For simplicity, we introduce artificial nodes −1, 0, N+1, N+2 with u(−1)
I (t) = u

(0)
I (t) = u

(N+1)
I (t) =

u
(N+2)
I (t) = 0 for all t, and these 4 nodes are never tested.

Step 2. The RbEx policy.

Under the RbEx policy, the algorithm always tests the nodes with maximum rewards. Let an

infectious node be found, for the first time, on day aN , where a is a positive real number. Note

that until the first infected node is found, in any application of the RbEx policy, u(i)
I (t) is the same

for any given i, and hence r̂i(t) is also the same. So, a is the same for any application of the RbEx

policy. Recall that in Example 4, nodes that are tested positive will be isolated. The cumulative

infections are at least min{aN,N} in the end.

Step 3. Consider the exploration process of the specific exploration policy.

Recall that from Step 2, an infectious node is found, for the first time, by the RbEx policy with

budget 10 tests on day aN . Under the specific defined exploration policy, we can choose a specific

b′ with b′ < a, such that no infectious node is tested by the RbEx policy with budget 9 tests before

and including day t = b′N .

We know that on day τ , nodes 1, 2, · · · , τ are infectious since β = 1. Note that one test is applied
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to exploration (randomly choice) every day, so with probability

τ∏
τ ′=1

(1− τ ′

N
), (E.38)

no infectious node is explored from the initial day to day τ . Then, with probability

τ−1∏
τ ′=1

(1− τ ′

N
) · τ
N
,

one infectious node is detected on day τ . Thus, with probability

t∑
τ=1

τ−1∏
τ ′=1

(1− τ ′

N
) · τ − 1

N
, (E.39)

one infectious node is tested by the exploration process on day τ (τ ≤ t), and this node is not the

new infectious one on day τ , i.e., has index τ . The probability defined in (E.39) increases with t

when N is fixed, and it can be close to 1 when t is close to N . Therefore, We can choose proper

parameters b′ and N such that the probability defined in (E.39) is larger than or equal to p0. In

particular, if N is large, we can choose a relatively small b′. In Theorem 23, we set p0 ≥ 99/100.

Let the infectious node detected (for the first time) by the exploration process have index j on day

t′, where t′ ≤ t. As discussed above, node j is not the new infectious node on the day t′, so we

have j < t′. In other words, node j + 1 must be infectious on day t′ with a positive test result, i.e.,

Yj(t
′) = 1. By Step 1 in Algorithm 8, the updated posterior probability of node j

e
(j)
I (t′ − 1) = 1, e

(j)
S (t′ − 1) = 0. (E.40)

Again, by Step 1 in Algorithm 8,

w
(j−1)
I (t′) = w

(j+1)
I (t′) = 1. (E.41)
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Then, by Step 2 in Algorithm 8,

u
(j−2)
I (t′ + 1) = u

(j−1)
I (t′ + 1) = u

(j)
I (t′ + 1) = u

(j+1)
I (t′ + 1) = u

(j+2)
I (t′ + 1) = 1. (E.42)

Since j is detected and isolated on day t′, then,

r̂j(t
′ + 1) = 0. (E.43)

By (E.37) and (E.42),

r̂j−1(t′ + 1) = u
(j−2)
S (t′ + 1)

(
1− u(j−3)

I (t′ + 1)
)

= 0

r̂j+1(t′ + 1) = u
(j+2)
S (t′ + 1)

(
1− u(j+3)

I (t′ + 1)
)

= 0.

(E.44)

By (E.36) and (E.42),

r̂j−2(t′ + 1) = u
(j−3)
S (t′ + 1)

(
1− u(j−4)

I (t′ + 1)
)

r̂j+2(t′ + 1) = u
(j+3)
S (t′ + 1)

(
1− u(j+4)

I (t′ + 1)
)
.

(E.45)

Step 4.The exploitation process of the specific exploration policy.

We first study an extreme case where no tests are applied. In this case, denote the prior probability

of node i on day τ as U (i)
I (τ), which can be calculated by the following recursion:

U
(i)
I (τ + 1) = U

(i)
I (τ) + U

(i)
S (τ)

(
1− (1− U (i−1)

I (τ))(1− U (i+1)
I (τ))

)
. (E.46)

Based on (E.46), recall that U (i)
I (0) = 0 if i ≤ 9N

10 , and U
(i)
I (0) = 10ε

N if 9N
10 < i ≤ N , then U (i)

I (τ)

increases over τ and is a function of ε. Then, given b′, N and t = b′N , we can choose a small

enough ε, denoted by ε(b′, N), such that U (i)
I (2t) < 1

2 for all i. Since U (i)
I (τ) increases over τ , then

U
(i)
I (τ) < 1

2 , τ ≤ 2t.

Now, we introduce the exploitation process. Let t = b′N < min{ 9
40 , a}N . There are at most 2t
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infectious nodes on day 2t, i.e., nodes 1, 2, · · · , 2t. Since t < min{ 9
40 , a}N , then nodes with index

from 9N/10−2t to N are in state S, which implies nodes with index from 9N/10−2t to N can never

be tested positive before day 2t. Thus, on any day τ ≤ 2t, for 9N/10−2t ≤ i ≤ N , if node i is tested,

and the testing result is negative. Recall that U (i)
I (τ) in (E.46) is calculated without any negative

testing results. Hence, u(i)
I (τ) ≤ U

(i)
I (τ). Furthermore, with the condition t = b′N < min{ 9

40 , a}N ,

we can find a small enough ε(b′, N), such that under the specific exploration policy,

u
(i)
I (τ) <

1

2
, τ ≤ 2t, 9N/10− 2t ≤ i ≤ N. (E.47)

In the rest, we divide the nodes in to 3 sets: Q1 = {i|i ≤ 2t}, Q2 = {i|2t < i < 9N/10 − 2t}, and

Q3 = {i|9N/10− 2t ≤ i ≤ N}.

Fact 1. For i ∈ Q1 and τ ≤ 2t, u(i)
I (τ) = 1 or u(i)

I (τ) = 0.

Proof. If no test is applied to Q1, then u
(i)
I (τ) = 0 for all i ∈ Q1.

On some day τ ≤ 2t, if one node with index j ∈ Q1 is tested positive on day τ − 1, then by (E.42),

u
(j−2)
I (τ) = u

(j−1)
I (τ) = u

(j)
I (τ) = u

(j+1)
I (τ) = u

(j+2)
I (τ) = 1. In other words, if node j is tested

positive on day τ − 1, then node j, its neighbors, and neighbors of neighbors have probabilities of

infections equal to 1 on day τ .

On some day τ , if node j is not tested positive on day τ − 1, and neither of its neighbors and

neighbors of neighbors are is not tested positive, then u
(j)
I (τ) = 1 only when u

(j)
I (τ − 1) = 1, or

u
(j−1)
I (τ − 1) = 1 or u(j+1)

I (τ − 1) = 1 since β = 1. Otherwise u(j)
I (τ) = 0.

Fact 2. For i ∈ Q1 and τ ≤ 2t, r̂i(τ) = 1 or r̂i(τ) = 0.

Proof. If u(i)
I (τ) = 0, then r̂i(τ) = 0 by (E.36) and (E.37).

Now, we consider u(i)
I (τ) = 1 in the following cases: (i) If both neighbors of node i are isolated,

then r̂i(τ) = 0. (ii) If one of neighbors of node i (for example, node i − 1) is isolated, then by

(E.37), r̂i(τ) = 0 when u
(i+1)
I (τ) = 1, and r̂i(τ) = 1 when u

(i+1)
I (τ) = 0. (iii) If both neighbors
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are not isolated, then u
(i−1)
I (τ − 1) = 1 or u(i+1)

I (τ − 1) = 1, otherwise, u(i)
I (τ) = 0. Since there

is no recovery, then u
(i−1)
I (τ) = 1 or u(i+1)

I (τ) = 1. By Fact 1, u(j)
I (τ) = 1 or u(j)

I (τ) = 0 when

j ∈ Q1. If u(i+1)
I (τ) = u

(i−1)
I (τ) = 1, then r̂i(τ) = 0. If u(i+1)

I (τ) = 1, then by (E.36), r̂i(τ) = 0

when u(i−2)
I (τ) = 1, r̂i(τ) = 1 when u(i−2)

I (τ) = 0. If u(i−1)
I (τ) = 1, then by (E.36), r̂i(τ) = 0 when

u
(i+2)
I (τ) = 1, r̂i(τ) = 1 when u(i+2)

I (τ) = 0.

From (E.47), for all τ ≤ 2t and i ∈ Q3, we have

r̂i(τ) ≤ 2u
(i)
I (τ) < 1. (E.48)

Note that only nodes in Q1 and Q3 may have positive probabilities of infections. For all τ ≤ 2t

and i ∈ Q2, since u
(i)
I (τ) = 0, then r̂i(τ) = 0. Therefore, a node with a reward equal to 1 has the

largest reward.

Recall that on day t′, node j tested positive. From (E.45), nodes j−2 and j+2 have largest rewards

(= 1) on day t′ + 1, which are exploited on day t′ + 1, and all other nodes in Q1 have rewards 0.

This is because t′ is the first day when a positive node is found. Since node j is tested positive and

isolated on day t′, then all infectious nodes with indices less than j can no longer infect other nodes

in the line network. Now, we consider the nodes with indices larger than j. Recall that j < t′, so

node j + 1 must be infectious on the day t′, and node j + 2 must be infectious on day t′ + 1 since

β = 1. Thus, node j + 2 is tested positive and is isolated. Since the network is a line, both nodes

j + 1 and j + 2 can no longer infect other nodes once node j + 2 is isolated. Note that nodes in Q3

have positive rewards. When N is sufficiently large, in the rest of the exploitation process, nodes in

Q3 are tested. Recall that we have one test for exploration, and we can isolate at least 2 infectious

nodes with indices larger than j.

Repeat the process, we exploit nodes j+ 4, j+ 6, · · · on day t′+ 2, t′+ 3, · · · , respectively. Consider

the direction from node 1 to node N . On every day, there is at most one new infectious node, but

at least two infectious nodes can be isolated. On some day, denote as day t′ + x, the exploitation

process can progress beyond the infections (exceeding by one node) for the first time. In other
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words, node j+2x is tested negative on day t′+x. By Step 2 in Algorithm 8, e(j+2x)
I (t′+x−1) = 0.

However, since w(j+2x−1)
I (t′ + x) = 1 becuase node j + 2x − 2 is tested positive on day t′ + x − 1.

By Step 1 in Algorithm 8, u(j+2x)
I (t′ + x + 1) = 1, hence by (E.45), r̂j+2x(t′ + x + 1) = 1, which

implies node j + 2x has the largest reward and is exploited on day t′ + x+ 1, and it will be tested

positive. On day t′ + x+ 1, all infectious nodes are isolated.

Finally, we can calculate the total number of infections to be

j + 2(t′ − j) = 2t′ − j ≤ 2t′ ≤ 2t = 2b′N.

Let b = 2b′. This is an improvement by a factor of at least a
b in comparison to the RbEx strategy,

where a
b can be as large as desired by increasing the value of N or decreasing p0.

E.13. Construction of Networks and Further Results

E.13.1. Constructions of SBM and V-SBM

In this section, we construct SBMs and their variants.

SBM The SBM is a generative model for random graphs. The graph is divided into several

communities, and subsets of nodes are characterized by being connected with one another with

particular edge densities.27 The intra-connection probability is p1, and inter-connection probability

is p2. We denote the SBM as SBM(N,M, p1, p2). Note that the (expected) number of edges, denoted

by |E|, is

|E| = p1

2
N(

N

M
− 1) +

p2

2

N2

M
(M − 1). (E.49)

Now, we fix |E|, and choose the pair (p1, p2) under a fixed |E| in (E.49). The aim of fixing |E| is to

guarantee that the transmission of the disease would not be affected by edges.

V-SBM Now, we consider a variant of SBM, denoted by V-SBM. Different from SBM, we only

allow nodes in cluster i to connect to nodes in successive clusters (the neighbor clusters). Denote
27Here, we assume that M is an exact divisor of N .
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WS, (d, δ) γc Lp Ratio

(6, 0.05) 0.504 4.952 .0003

(4, 0) 0.500 62.876 0.191

(6, 0.1) 0.456 5.718 −0.027

(4, 0.03) 0.456 10.810 0.097

Table E.1: Clustering coefficients of WS networks.

WS, (d, δ) γc Lp Ratio

(6, .001) 0.599 21.188 0.209
(4, .0075) 0.489 21.264 0.182

(6, .005) 0.592 14.310 0.211

(4, .015) 0.473 14.253 0.174

(6, .009) 0.585 12.081 0.137

(4, .0225) 0.467 12.171 0.125

Table E.2: Shortest path lengths of WS networks.

the V-SBM as V-SBM(N,M, p1, p2). Similarly, the expected number of edges, denoted by |E|, is

|E| = p1

2
N(

N

M
− 1) + p2

N2

M
. (E.50)

Now, we fix |E|, and choose the pair (p1, p2) under a fixed |E| in (E.50). The aim of fixing |E| is to

guarantee that the transmission of the disease would not be affected by edges.

E.13.2. The impact of γc and Lp individually

In this subsection, we investigate the role of γc and Lp individually, not through the common factor

δ. We consider different WS networks with degrees d = 4, 6 and then adjust the rewiring probability

δ, such that one of (γc, Lp) is almost constant, and the other is varying. We can see that the trend

is similar to what we observed by varying δ in Table 6.6.
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