
Random Walk Learning and the Pac-Man Attack
Xingran Chen, Parimal Parag, Rohit Bhagat, Zonghong Liu, and Salim El Rouayheb

Abstract—Random walk (RW)-based algorithms have long
been popular in distributed systems due to low overheads and
scalability, with recent growing applications in decentralized
learning. However, their reliance on local interactions makes them
inherently vulnerable to malicious behavior. In this work, we
investigate an adversarial threat that we term the “Pac-Man”
attack, in which a malicious node probabilistically terminates
any RW that visits it. This stealthy behavior gradually eliminates
active RWs from the network, effectively halting the decentralized
operators without triggering failure alarms. To counter this
threat, we propose the AVERAGE CROSSING (AC) algorithm—a
fully decentralized mechanism for duplicating RWs to prevent
RW extinction in the presence of Pac-Man. Our theoretical
analysis establishes that (i) the RW population remains almost
surely bounded under AC and (ii) RW-based stochastic gradient
descent remains convergent under AC, even in the presence of
Pac-Man, with a quantifiable deviation from the true optimum.
Furthermore, they uncover a phase transition in the extinction
probability as a function of the duplication threshold, which we
explain through theoretical analysis of a simplified variant of
AC. Our extensive empirical results on both synthetic and public
benchmark datasets validate our theoretical findings.

I. INTRODUCTION

Decentralized algorithms are becoming increasingly im-
portant in modern large-scale networked applications. These
algorithms enable a network of nodes/agents, each with access
only to local data and a limited local view of the connection
graph, to collaborate in solving global computational tasks
without centralized coordination. Among the most widely
studied approaches are random-walk (RW)-based algorithms
[1], [2] and gossip-based algorithms [3].

While gossip-based methods are powerful, their repeated
local broadcasts can lead to large communication overhead in
large-scale systems [3]. This motivates the study of RW-based
algorithms, which offer a communication-efficient alternative
for large networks due to their simplicity and scalability [1],
[2]. As a result, RW-based methods have been successfully
applied across a wide range of domains [4]–[8]. A particu-
larly compelling application is decentralized machine learning,
where RWs are used to aggregate learning on data distributed
across networked agents [9], [10].

Despite their advantages, RW learning algorithms are sus-
ceptible to security threats [11], [12]. We focus in this work on
a particular threat in which certain nodes behave maliciously
by terminating, or “killing”, any random walk that reaches

Xingran Chen, Rohit Bhagat, Zonghong Liu, and Salim El Rouayheb are
with Department of Electrical and Computer Engineering, Rutgers University,
Piscataway Township, NJ 08854, USA (E-mail: xingranc@ieee.org, {rb1395,
zl304, sye8}@scarletmail.rutgers.edu).

Parimal Parag is with the Department of Electrical Communication En-
gineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
(E-mail: parimal@iisc.ac.in).

them. We refer to this as the Pac-Man attack, evoking the
arcade character known for devouring everything in its path.

Recent work by [13] introduced a novel approach based
on self-regulating RWs, aimed at enhancing the resilience of
RW-based algorithms in a decentralized manner. The main
algorithm proposed in this work is called DECAFORK, which
operates by maintaining a history of RW visit times at each
node. The work in [13] provides theoretical guarantees for
catastrophic failure scenarios under idealized assumptions and
approximations. The followup work in [14] includes numerical
simulations evaluating the DECAFORK ’s behavior in the
presence of malicious nodes.

In this work, to counter the Pac-Man attack, we propose a
new decentralized duplication mechanism, termed the AVER-
AGE CROSSING (AC) algorithm (see Algorithm 1). In the AC
algorithm, each benign node independently decides whether to
duplicate an incoming RW based solely on local timing infor-
mation—specifically, the time interval between two successive
visits from any RW. If this interval exceeds a predetermined
threshold, the node infers that at least one RW may have been
killed by the Pac-Man and, with a given probability, duplicates
the currently visiting RW. In the following, we summarize the
main contributions of this article.

(i) Novel theoretical framework and analytical results: We
develop a novel and rigorous theoretical framework to analyze
the evolution of the number of active RWs under AC, explicitly
accounting for the strong interdependence among RWs. Within
this framework, we establish that the RW population under AC
is almost surely bounded (Theorem 1).

Beyond boundedness, we further reveal a phase transition
behavior of the RW population with respect to the duplication
threshold. Specifically, for appropriately chosen thresholds,
the RW population persists with positive probability, whereas
overly large thresholds lead to almost sure extinction. To
theoretically characterize this phenomenon, we introduce a
simplified and analytically tractable variant of the AC algo-
rithm, under which we rigorously establish the existence of a
phase transition (see Proposition 1).

(ii) Integration with decentralized learning and proof of con-
vergence: The AC mechanism can be seamlessly integrated
into random walk stochastic gradient descent (RW-SGD) [9],
[15], [16]. We prove that RW-SGD converges under the AC
mechanism in the presence of an adversary (see Theorem 2).
We further characterize the bias induced by premature RW
termination, showing how adversarial behavior skews the
optimizer and leads to a bounded deviation from the true
global optimum (Proposition 2).

II. PROBLEM FORMULATION

A. Graph and Random Walks

These agents are modeled as nodes in a connected undi-
rected graph, where each agent possesses its own local data
and can communicate only with neighboring agents.1 Without
loss of generality, we assume that the Pac-Man agent is
indexed as node 1. The communication topology graph is
constructed as a finite graph G ≜ (V, E), where the set of
agents/nodes is V ≜ [N], and E ⊆

(V
2

)
denotes the set of

edges. In addition, let B ≜ V\ {1} denote the set of benign
nodes.

In this system, computation is carried out via RWs on
the graph. Each RW is determined by a fixed and identical
transition probability matrix P . Moreover, each RW carries a
token message (which can be viewed as a global task) that
is processed and passed along the network. At each time
step, only the node currently holding a token performs local
computation and updates the message. After computation,
the current node forwards the token to a randomly selected
neighbors based on the transition probability matrix P . This
process continues until a predefined stopping criterion is
satisfied. When multiple RWs are present, each is uniquely
identifiable (e.g., via an index j) to track their individual
progress through the network.

B. Threat Model: The Pac-Man Attack

We are interested in ensuring the resiliency of RW-based
algorithms—that is, their ability to prevent total extinction
and continue operating effectively even when a malicious
node attempts to terminate the RWs. Specifically, we focus
on a threat we refer to as the Pac-Man attack: a malicious
node, termed Pac-Man, terminates all incoming RWs without
performing the required computation or forwarding the result
to a neighbor2. This setting already captures the core difficulty
of the problem: even one such adversary is sufficient to
cause eventual extinction of all RWs with probability one,
thereby completely halting the global task. The Pac-Man is
particularly dangerous due to its ability to remain hidden
through a deceptive behavior.

(i) The Pac-Man node can reply positively to all network-
level fault-tolerance checks and controls, for example re-
transmissions and timeouts [17]–[21], making it difficult
to distinguish it from benign nodes despite its malicious
actions.

(ii) To avoid detection, the Pac-Man node terminates incom-
ing RWs independently with a probability ζ ∈ (0, 1],
referred to as the termination probability. This ran-
domized behavior allows the Pac-Man to conceal itself

1Without loss of generality, we restrict our analysis to connected graphs.
For disconnected graphs, the proposed theoretical framework can be applied
separately to each connected component, and the analysis proceeds analo-
gously.

2In this paper, we focus on the case of a single Pac-Man node to simplify
the presentation of the algorithm and its theoretical analysis. The proposed
framework naturally extends to multiple Pac-Man nodes; see Remark 2 in
Appendix A for further discussion.

among benign nodes. If the Pac-Man node terminates
all incoming RWs, it would never propagate RWs to
its neighbors, making it easily identifiable as malicious
since no RWs would be observed from that node over a
long time horizon. In contrast, by terminating incoming
RWs only with a positive probability, the Pac-Man can
intermittently forward RWs, thereby blending in with
normal nodes.

One commonly used fault-tolerance technique is the in-
troduction of redundancy. However, static redundancy alone
is ineffective in this adversarial setup. Simply starting with
multiple RWs does not guarantee their survival: for any small
termination probability ζ > 0, all RWs will eventually be
terminated with probability 1, causing the task to fail. Thus,
redundancy cannot serve as a long-term solution.

C. RW-based Stochastic Gradient Descent

We consider the following standard distributed optimization
and learning problem:

min
x∈Rm

f(x) = min
x∈Rm

Eu∼π [fu(x)] , (1)

where each node u possesses a local function fu(x), π is a
target sampling distribution, and m ∈ Z+. Here, we assume
[π]u > 0 for u ∈ V .

Under local communication constraints, solving problem
(1) using RW-SGD algorithms has proven to be highly effec-
tive [22]–[24]. Given a target sampling distribution π and a
connected graph G, The Metropolis–Hastings algorithm [23]
constructs a RW on G with transition matrix P , for which
π is the stationary distribution.3 The RW-SGD is outlined as
xt+1 = xt − γtĝvt(xt), where vt is the node visited by the
random walk at time t, and ĝvt(xt) denotes the gradient or
sub-gradient at that node. Here, the sequence {vt}t∈N evolves
according to P .

D. Designable Properties of the Decentralized Mechanism

The entire goal is to design a decentralized mechanism
such that (i) the global task can be carried out via RW-based
algorithms even in the presence of a Pac-Man node, and (ii)
when the proposed decentralized mechanism is integrated with
RW-SGD, it remains effective and convergent.4

At the beginning of time slot t, let Zt denote the set of
indices of active RWs, and define the random variable Zt ≜
|Zt| as the total number of active RWs at that moment. For
each RW j ∈ Zt at time t, we denote its location at time t by
Xj(t) ∈ V . At the initial time t = 0, we denote the number of
initial RWs as Z0 = z0, where z0 is a predetermined scalar.
To achieve our entire goal, the proposed algorithm must have
the following desirable properties.

3The transition matrix P depends on both the target sampling distribution
π and the graph G. We re-parameterize it as Pπ,G ∈ RN×N , and simply
write P when there is no risk of confusion.

4In the absence of adversarial behavior, RW-SGD is known to converge
to the global optimum [22]–[24]. However, the introduction of a Pac-
Man node fundamentally alters the dynamics. Since this adversarial node
probabilistically terminates incoming RWs, it is no longer clear whether RW-
SGD remains convergent.

a) No Blowup: To ensure system stability, we must
avoid uncontrolled growth in the number of RWs. The algo-
rithm should keep the RW population bounded with probabil-
ity one:

Pr

(
sup
t

Zt <∞
∣∣∣∣Z0 = z0

)
= 1. (2)

b) Low Probability of Extinction: To ensure the re-
siliency of the system, it is essential to sustain the RW
population over time. The algorithm should keep that the
probability that the Pac-Man attack eliminates all RWs is
small. Let δ be a small threshold, we have

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) < δ. (3)

c) Convergence: All active RWs under RW-SGD must
converge to the same minimizer, in the following sense:

lim
t→∞

E
[
∥x(j)

t − x⋆∥
]
= 0, ∀j ∈ Zt, (4)

where x⋆ denotes the convergent point attained by the RW-
SGD in the absence of a Pac-Man node. If the limit in
(4) exists, we further aim to characterize the approximation
error with respect to the true optimizer x⋆, by bounding the
deviation ∥x̃⋆ − x⋆∥.

III. AVERAGE CROSSING ALGORITHM

We present the AVERAGE CROSSING (AC) algorithm, a
decentralized mechanism for adaptively duplicating RWs to
meet the designable properties outlined in Section II-D. We
outline the AC algorithm in Algorithm 1.

The core idea is as follows: each benign node u ∈ B
maintains a variable L

(u)
t , representing the most recent time

prior to time t at which node u was visited by any RW. If node
u has not been visited for too long, i.e., the interval t− L

(u)
t

exceeds a predetermined threshold Au, node u suspects that
at least one RW may have been lost. Then, with probability q,
it duplicates a new RW as an identical copy of the currently
visiting one (see lines 5-6 in Algorithm 1). If multiple RWs
arrive at node u at time t and the same condition met, node u
selects one of the arriving RWs uniformly at random and
duplicates it with probability q.

IV. FUNDAMENTAL ANALYSIS

In this section, we present a rigorous theoretical analysis of
the AC algorithm, focusing on the designable properties out-
lined in Section II-D. For brevity, the preliminaries—including
notations, definitions, and assumptions—are deferred to Ap-
pendix A.

A. Population Boundedness

First, we establish that the number of active RWs remains
almost surely bounded at all times, despite ongoing duplica-
tions. This property is crucial for ensuring that the algorithm
is stable and does not flood the network with RWs.

Theorem 1 (Boundedness). On any finite graph G′ = (V ′, E′)
of Definition 4 in Appendix A, with z0 ⩾ 1, Au ⩾ 1, q ⩽ 1, and

Algorithm 1 Average Crossing (AC) Algorithm

1: Input: The graph G, the thresholds {Au}u∈[N], the initial
recording L

(u)
0 = 0 for u ∈ [N], the forking probability

q, and the initial location of RWs Z0.
2: for t ≥ 0 do
3: for u ∈ B do
4: if u ∈ ∪j∈Zt

Xt,j then.
5: if u ∈ [N] and t− L

(u)
t > Au then

6: With probability q, node u forks a new RW
by uniformly copying one of the currently visiting RWs.

7: end if
8: L

(u)
t ← t.

9: end if
10: end for
11: end for

ζ ∈ (0, 1], the AC algorithm ensures that lim supt→∞ Zt <∞
almost surely.

Proof. The full proof is given in Appendix B.

Theorem 1 implies that regardless of the thresholds
{Au}u∈B selected by the benign nodes, the RW population
remains bounded over time almost surely.

B. Phase Transition in Extinction Behavior

Second, we study how the duplication threshold affects
whether the RW population survives or dies out. Intuitively, a
small threshold leads to frequent duplications, increasing the
chance of survival, while a large threshold delays responses
and may result in extinction. Numerical experiments (Fig. 2
in Section V and Fig 6 in Appendix G) support this intuition,
showing a soft phase transition in extinction probability as the
threshold decreases. In particular, by choosing the duplication
threshold appropriately, the extinction probability can be re-
duced to a very small positive value.

However, analyzing the AC algorithm is challenging due
to the implicit correlations in the duplication decisions across
nodes. Upon each visit, node u decides whether to duplicate
by evaluating t−L

(u)
t , which reflects the cumulative influence

of active RWs’ trajectories from the initial time to the current
moment. As a result, a benign node’s duplication behavior
is indirectly affected by the entire set of active RWs. These
hidden correlations significantly complicate the analysis.

To circumvent this difficulty and better understand the
extinction behavior, we consider a simplified variant called
the Weak Version of AC (W-AC) algorithm, formally defined
in Algorithm 2 in Appendix C. The key difference is that,
in W-AC, each RW decides autonomously when to duplicate
based only on the time since its last visit to the current node,
whereas in AC the duplication decision is made by the node.

Proposition 1 (Soft Phase Transition). Consider z0 initial uni-
form RWs on an almost fully connected graph from Definition
12 (in Appendix C). Then, under the W-AC algorithm defined

in Algorithm 2, there exist two non-negative constants ᾱ ⩾ α,
such that, for all z0 ⩾ 1,{

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) = 1 if A ⩾ ᾱ

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) < 1 if A ⩽ α.

Proof. The proof is given in Appendix C.

C. Convergence

Now, we study how the AC algorithm affects the conver-
gence of RW-SGD in the presence of a Pac-Man node. It is
important to note that each RW will eventually be terminated
by the Pac-Man node with probability one. To address this,
rather than relying on a single RW, we need to analyze the
behavior of a chain of RWs. Specifically, whenever a RW
duplicates, we refer to the original as the parent and the
resulting RW as its child.

Definition 1 (Chain of RWs). Start with an initial RW j0 ∈
[z0]. At each step s ⩾ 0, if js has at least one child, let js+1

be a uniformly chosen child of js; otherwise, set js′ = −1
for all s′ ⩾ s to mark termination. We refer to {js}s∈N as a
chain of RWs. We call the chain infinite if lims→∞ js > 0;
otherwise, we call it finite.

Fig. 1: Illustration of a chain of RWs. Node u duplicates a new
RW (green) by copying the purple RW. Node v duplicates
a new RW (orange) by copying the green RW. The blue
trajectory shows how these RWs are connected over time,
forming a chain.

We call a trajectory {Zt}t∈N surviving if inft∈N Zt > 0.
Under a surviving trajectory {Zt}t∈N, there must exist at least
one infinite chain of RWs; otherwise, if all chains of RWs are
finite, then there exists some t0 ∈ Z such that |Zt| = 0 for t ⩾
t0, which contradicts the definition of surviving trajectories.

Theorem 2. Under the AC mechanism and along a surviving
trajectory {Zt}t⩾0, RW-SGD converges to the minimizer of
the following problem:

min
x∈Rm

f̃(x) = min
x∈Rm

E
u∼π

(ζ)
chain

[fu(x)], (5)

where

π
(ζ)
chain =

{
[0, ν(1)] ζ = 1,

ν(ζ) ζ ∈ (0, 1),
(6)

and ν(ζ) is defined in Definition 6 in Appendix A.

Proof. The full proof is given in Appendix D.

We treat a chain of RWs as a single effective RW. The
corresponding effective transition probability matrix P

(ζ)
chain is

provided in Appendix E. This matrix will be used to quantify
the deviation of the new minimizer from the true global
optimum x⋆. In the standard RW-SGD algorithm, when the
stepsize ηt decreases with time t and tends to 0, the algorithm
converges to a deterministic point; if ηt remains constant, it
converges to a random variable [22]–[24].

Proposition 2 (Shift of Optima). Let P
(ζ)
chain be defined in

Appendix E, with spectral gap γ
(ζ)
chain. Let ∥·∥TV denote the total

variation distance, and let x0 be the starting point. Under the
setting of Theorem 2:

(i) If the stepsize ηt ↓ 0, then RW-SGD converges to the
minimizer x̃⋆ of (5). Moreover,

1

L
∥∇f(x̃⋆

)
∥ ⩽ ∥x̃⋆ − x⋆∥ ⩽ 1

µ
∥∇f(x̃⋆)∥.

(ii) If the stepsize ηt = η < 1
L , then

E [∥x̃T − x⋆∥] ⩽2(1− γµ)T ∥x0 − x⋆∥2

+
ηLσ2

γ
(ζ)
chainµ

2
+

∥∥ν̃(ζ) − π
∥∥2
TV

σ2L

µ3
.

Proof. The proof is given in Appendix F.

V. SIMULATIONS

In the main text, we only present representative simulations,
and additional simulation results are provided in Appendix G.

A. Simulation Setup

a) Graph Settings: We consider a complete graph with
100 nodes, consisting of one Pac-Man node and 99 benign
nodes. The target sampling distribution is uniform, i.e., π =(

1
100 ,

1
100 , · · · ,

1
100

)
. We assume Au = A for all u ∈ B. We

set both the duplication and termination probabilities to 1, i.e.,
q = ζ = 1. We also consider three other connected graphs,
including regular, ring, and Erdős–Rényi graphs; details are
provided in Appendix G-A.

b) Learning Settings: For the distributed learning prob-
lem defined in (1), we evaluate our approach on both synthetic
and public benchmark datasets.

Synthetic dataset. We consider a decentralized linear re-
gression task, where each node u minimizes a local mean
squared error (MSE) loss of the form: fu(x) = (wTx + b −
yu)

2, where x is the input feature, yu is the target label at
node u, w is the weight vector, and b is the bias. We assume
each node holds only a single data point. This local objective
fu(x) is strongly convex and L-smooth.

Public benchmark dataset. We use the MNIST handwrit-
ten digit dataset [25]. The dataset is evenly partitioned into 100
disjoint subsets, with each node is assigned a unique subset.
Each node u minimizes the empirical cross-entropy loss over
its local dataset Du: fu(w) = 1

|Du|
∑

(x,y)∈Du
ℓ(w;x, y),

where w denotes the model parameters, ℓ(w;x, y) is the cross-
entropy loss function, and Du is the local subset assigned to
node u. Both i.i.d. and non-i.i.d. data partitioning schemes for
distributing data are considered; further details are provided
in Appendix G-B.5

c) Baselines: To the best of our knowledge, the algo-
rithm most closely related to our work is the DECAFORK
algorithm [13], [14]. To ensure a fair comparison, DECAFORK
method adopts the same random walk transition matrix P , as
used in the AC algorithm, so their movement behavior remains
identical.

Another baseline we consider is the classical GOSSIP-
BASED SGD [3]. We incorporate the same adversarial setting
as before. As shown in Fig. 4 in Appendix G-C, GOSSIP-
BASED SGD exhibits significantly slow convergence in the
Pac-Man setting. Consequently, we conclude that it is not a
suitable baseline and exclude it from the remaining simulation
results.

B. Boundedness and Persistence

We begin by validating Theorem 1. In Fig. 2(a), the y-axis
shows the number of RWs, averaged over 100 iterations, while
the x-axis denotes the time steps. We first allow the RWs to
traverse without the presence of the Pac-Man for a short phase
(T0 = 2000). We then introduce the Pac-Man to run the AC
algorithm over a longer time horizon (T = 50000). The RW
population process {Zt}t∈Z remains bounded over time.

(a) bounded population (b) soft phase transition

Fig. 2: Behaviors of {Zt}t⩾0 on the complete graph.

Then, we validate the persistence. Although Proposition 1
focuses exclusively on the W-AC algorithm, we extend our
investigation by simulating the AC algorithm extinction behav-
ior. Fig. 2(b) illustrates a soft phase transition in the extinction
probability as a function of A. The y-axis shows the approx-
imated extinction probability6, while the x-axis denotes the
value of A. when A exceeds a critical value (which depends
on the graph topology), extinction occurs with probability 1.
Conversely, when A falls below this critical threshold, the
extinction probability drops sharply and approaches zero for
small values of A.

5Results under i.i.d. partitioning are provided in Appendix G-E, while the
main text focuses on simulations under non-i.i.d. partitioning.

6We approximate the extinction probability by running a large number of
simulations over a long time horizon and computing the ratio of runs in which
the RW population goes extinct to the total number of runs.

C. Convergence

Figs. 3(a) and (b) present the convergence performance of
RW-SGD under the proposed AC algorithm, in comparison
with the DECAFORK baseline, on the synthetic and public
benchmark datasets, respectively. The y-axis represents the
loss curves,7 while the x-axis denotes the number of time
steps. From the figure, both loss functions demonstrate ef-
fective convergence, which demonstrates Theorem 2. Notably,
the loss curves under RW-SGD are nearly identical across AC
and DECAFORK. This observation is expected, the distributed
optimization (1) depends on the movement of active RWs,
which is governed by the shared transition matrix P . Since
the two algorithms differ only in how RWs are duplicated, not
in how active RWs move, their convergence behavior remains
similar.

synthetic dataset public benchmark dataset

Fig. 3: Loss function v.s. learning steps on different graphs.

Finally, we evaluate the performance of the final models
across different graphs using testing accuracies as the perfor-
mance metric. Table I shows that the presence of a Pac-Man
node degrades performance. This is because, in the Pac-Man
setting, active RWs fail to access a representative sample of
the entire dataset, leading to degraded performance. Further
discussion is provided in Appendix G-E.

Complete Regular Ring Erdős–Rényi
A single SGD

without the Pac-Man 0.9764 0.9719 0.9782 0.9751

AC 0.9613 0.9611 0.9617 0.9596
DeCaFork 0.9620 0.9606 0.9596 0.9621

TABLE I: Testing accuracies on different graphs under non-
i.i.d. partitioning.

VI. CONCLUSION

In this work, we investigated the robustness of RW-based
SGD under the Pac-Man attack. This stealthy and highly
disruptive threat can gradually degrade the decentralized op-
erations without triggering any detectable failure signals. To
address this challenge, we proposed the AC algorithm, a fully
decentralized duplication mechanism based solely on local
visitation intervals, and provided rigorous analysis. Extensive
experiments on synthetic and real-world datasets validate our
findings.

7In Fig. 3(a), the results are presented on a logarithmic scale.

REFERENCES

[1] L. Lovász, “Random walks on graphs,” Combinatorics, Paul Erdős is
eighty, vol. 2, pp. 1–46, 1993.

[2] D. A. Levin and Y. Peres, Markov Chains and Mixing Times. American
Mathematical Society, second ed., 2017.

[3] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified
theory of decentralized SGD with changing topology and local updates,”
in Proceedings of the 37th International Conference on Machine Learn-
ing, vol. 119, pp. 5381–5393, 2020.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” technical report, Stanford InfoLab,
1999.

[5] F. Fouss, A. Pirotte, J. Renders, and M. Saerens, “Random-walk com-
putation of similarities between nodes of a graph with application to
collaborative recommendation,” IEEE Transactions on knowledge and
data engineering, vol. 19, no. 3, pp. 355–368, 2007.

[6] Y. Liu, S. Ji, and P. Mittal, “Smartwalk: Enhancing social network
security via adaptive random walks,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp. 492–503, 2016.

[7] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in Proceedings of the
fourth ACM international conference on Web search and data mining,
pp. 635–644, 2011.

[8] C. Zhang, D. Song, C. Huang, A. Swami, and N. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data
mining, pp. 793–803, 2019.

[9] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer
algorithm for distributed optimization in sensor networks,” in 46th IEEE
Conference on Decision and Control, pp. 4705–4710, 2007.

[10] G. Ayache, V. Dassari, and S. E. Rouayheb, “Walk for learning: A
random walk approach for federated learning from heterogeneous data,”
IEEE Journal on Selected Areas in Communications, vol. 41, no. 4,
pp. 929–940, 2023.

[11] Y. Lai, M. Waniek, L. Li, J. Wu, Y. Zhu, T. P. Michalak, T. Rahwan, and
K. Zhou, “Coupled-space attacks against random-walk-based anomaly
detection,” IEEE Transactions on Information Forensics and Security,
vol. 19, pp. 9315–9329, 2024.

[12] X. Zhang, H. Xie, P. Yi, and J. Lui, “Enhancing sybil detection via
social-activity networks: A random walk approach,” IEEE Transactions
on Dependable and Secure Computing, vol. 20, no. 2, pp. 1213–1227,
2023.

[13] M. Egger, R. Bitar, G. Ayache, A. Wachter-Zeh, and S. Rouayheb, “Self-
duplicating random walks for resilient decentralized learning on graphs.”
arXiv: 2407.11762, 2024.

[14] M. Egger, R. Bitar, G. Ayache, A. Wachter-Zeh, and S. E. Rouayheb,
“Self-regulating random walks for resilient decentralized learning on
graphs,” arXiv preprint arXiv:2407.11762, 2024. Revised February 10,
2025.

[15] T. Sun, Y. Sun, and W. Yin, “On markov chain gradient descent,”
Advances in neural information processing systems, vol. 31, 2018.

[16] X. Mao, K. Yuan, Y. Hu, Y. Gu, A. H. Sayed, and W. Yin, “Walkman: A
communication-efficient random-walk algorithm for decentralized opti-
mization,” IEEE Transactions on Signal Processing, vol. 68, pp. 2513–
2528, 2020.

[17] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[18] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[19] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[20] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput-
ing Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.

[21] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2,
pp. 225–267, 1996.

[22] M. Even, “Stochastic gradient descent under markovian sampling
schemes,” in Proceedings of the 40th International Conference on
Machine Learning, 2023.

[23] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170, 2010.

[24] T. Sun, Y. Sun, and W. Yin, “On markov chain gradient descent,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 9918–9927, 2018.

[25] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141 – 142, 2012.

[26] R. Durrett, Probability: Theory and Examples. Thomson, Brooks Cole,
2019.

[27] R. D. Foley and D. R. McDonald, “Yaglom limits can depend on the
starting state,” Journal of Applied Probability, vol. 54, no. 3, pp. 726–
734, 2017.

[28] P. Collet, S. Martínez, and J. S. Martín, Quasi-Stationary Distributions:
Markov Chains, Diffusions and Dynamical Systems. Probability and Its
Applications, Springer, 2012.

[29] P. Billingsley, Probability and Measure. Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons Inc., 3rd ed., 1995.

[30] J. N. Darroch and E. Seneta, “On quasi-stationary distributions in
absorbing discrete-time finite markov chains,” Journal of Applied Prob-
ability, vol. 2, no. 1, pp. 88–100, 1965.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[32] Z. Liu, S. Rouayheb, and M. Dwyer, “The entrapment problem in
random walk decentralized learning,” in IEEE ISIT, 2024.

[33] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bulletin of the American Mathematical Society, vol. 43,
no. 4, pp. 439–561, 2006.

[34] T. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” 2019.
arXiv:1909.06335.

APPENDIX A
PRELIMINARIES: NOTATIONS, DEFINITIONS, AND

ASSUMPTIONS

In this Appendix, we introduce the notation, definitions,
and assumptions used in the system model and its transition
dynamics.

Definition 2 (Communication topologies and RWs). A com-
munication topology is defined as a finite directed graph
G ≜ (V, E) with the set of nodes V = [N] and the set of
edges E ⊆

(V
2

)
. Each RW Xj : Ω → VZ+ on this graph

is assumed to be i.i.d. and can be defined by the common
transition probability matrix P : V → M(V), where the
probability of transition from node u to node v in one time
step at time t ∈ Z+, is

Puv ≜ Pr (Xj(t+ 1) = v |Xj(t) = u) .

We will call the RW on graph G aperiodic if transition
probability matrix P is aperiodic.

Remark 1. Without loss of generality, we assume that Puv > 0
for all nodes v connected to node u in graph G. Therefore,
transition matrix P is irreducible iff graph G is connected.

Definition 3 (Timing conventions). We define the timing
conventions of the system as follows:
(1) At the beginning of time slot t, let Zt denote the set

of indices of active RWs. Each active RW j ∈ Zt is
associated with a birth time θj ⩾ 0 and an initial location
uj ≜ Xj(θj) ∈ V . Specifically, let Zt = |Zt|.

(2) At the end of time slot t, each active RW j ∈ Zt moves
from its current location to a randomly selected neighbor
in the next time slot. We denote by Xj(t+1) the location
of RW j after this movement at time t+ 1.

(3) Upon arrival at location Xj(t+1) at time t+1, termination
operation at node 1 and creation operations at other nodes
is performed (if applicable).

Under the model assumption, the Pac-Man node is fixed at
location 1. We next present a formal definition of the system
including the Pac-Man node.

Definition 4. Consider a communication topology G =
(V, E), as defined in Definition 2, where node 1 acts as the
Pac-Man, such that if a RW visits node 1, it is sent to a death
node 08 with a termination probability ζ ∈ (0, 1]. That is,
we augment graph G to G′ = (V ′, E′) where V ′ ≜ V ∪ {0}
and E′ ≜ E ∪ {(1, 0)}. In the presence of this Pac-Man, the
original RW transition probability matrix P now changes to
P ′, where for each state u, v ∈ V ′

P ′
uv ≜



Puv, u ∈ B, v ∈ V,
(1− ζ)Puv, u = 1, v ∈ V,
ζ, u = 1, v = 0,

1, u = 0, v = 0

0, u = 0, v ∈ V.

(7)

8The death node is a virtual node used only for a clearer presentation.

Based on Definition 4, the transition matrix P ′ can be
characterized by two cases: ζ = 1 and 0 < ζ < 1. When
ζ = 1, the Pac-Man node becomes an absorbing state, whereas
when 0 < ζ < 1, the Pac-Man node is non-absorbing. In
particular,
(1) When ζ = 1, the Pac-Man node eats every incoming RW,

and the local data at the Pac-Man node cannot be utilized,
making it an absorbing state. From Definition 4, the death
node 0 is also absorbing. Therefore, we merge the Pac-
Man node and the death node into a single absorbing one,
which we continue to denote as node 1. The corresponding
transition matrix P ′ becomes

P ′ =


1 0 · · · 0
P21 P22 · · · P2N

...
...

...
...

PN1 PN2 · · · PNN

 ≜

[
1 01×(N−1)

R(1) Q(1)

]
. (8)

We observe that Q(1) ∈ [0, 1]B×B is sub-stochastic matrix
where Q

(1)
uv = Puv for each u, v ∈ B, and R(1) ∈ [0, 1]B×1

column vector where R
(1)
u = Pu1 for each benign node

u ∈ B.
(2) When 0 < ζ < 1, the local data at the Pac-Man node

cannot be reliably utilized, because any RW visiting it
is terminated with probability strictly less than 1. In this
case, only the death node 0 is absorbing. For clarity, we
denote the location of the death node as 0. According to
Definition 4 and denoting ζ̄ ≜ 1 − ζ, the corresponding
transition matrix P ′ becomes

P ′ =


1 0 · · · 0
ζ ζ̄P11 · · · ζ̄P1N

0 P21 · · · P2N

...
...

...
...

0 PN1 · · · PNN

 ≜

[
1 01×N

R(ζ) Q(ζ)

]
. (9)

We observe that

R(ζ) ≜

[
ζ

0(N−1)×1

]
, Q(ζ) ≜

[
ζ̄P11 ζ̄S
R(1) Q(1)

]
.

The row vector S ∈ [0, 1]1×B such that S1v = P1v for
each benign node v ∈ B.

Remark 2. If ζ = 1, the analysis extends straightforwardly
to the setting with multiple Pac-Man nodes. In this case,
all Pac-Man nodes can be treated as a single “super node”,
which acts as an absorbing state of the system. The resulting
analysis is essentially identical to that of the single Pac-Man
node case. If ζ < 1, the analysis becomes more involved,
since the transition probability to the absorbing state (i.e.,
the death node 0) depends on the identity of the Pac-Man
node through (a) their corresponding termination probabilities
and (b) their connectivity to the benign nodes. Nevertheless,
the analysis can still be carried out within the theoretical
framework proposed for the single Pac-Man node setting,
although the analysis would be more tedious for a larger
number of Pac-Man nodes.

Definition 5 (Robustly Connected Graph). A graph G is
robustly connected if

(i) every pair of benign nodes in B is connected by a path
that avoids the Pac-Man node, and

(ii) the Markov chain corresponding to each active RW is
aperiodic.

Remark 3. According to Definition 5, a robustly connected
graph cannot be partitioned into two disjoint components
by Pac-Man. In addition, in a robustly connected graph, the
Markov chain corresponding to each active RW is irreducible
and aperiodic.

Definition 6. For ζ ∈ (0, 1], let Q(ζ) be the matrix defined in
(8) and (9). Let α(ζ) denote the (unique) maximum eigenvalue
of Q(ζ)9, and let ν(ζ) denote the associated left normalized
positive eigenvectors with unit sum.

Assumption 1. Each RW has an i.i.d. evolution on this graph
with transition probability matrix P , conditioned on their
initial locations.

Assumption 2. The graph G defined in Definition 2 is a
robustly connected graph.

Next, we adopt the common assumptions used in standard
distributed optimization problems, as follows.

Assumption 3. Each local function fu(x) in (1) with u ∈ V
is µ-strongly convex and L-smooth.

Assumption 4. Bounded norm of the local gradient at the
global optimum x⋆, i.e. supu∈V ∥∇fu(x⋆)∥2 ⩽ σ2, where x⋆

is the minimizer of (1).

In the remainder of this article, we assume that Assumptions
1 – 4 hold.

APPENDIX B
PROOF OF THEOREM 1

Definition 7. Let Pru denote the probability measure under
which the RW j starts at node u, i.e., X0,j = u. Given a
distribution ν over the node set [N], we define the mixed law
Prν

Prν =

∫
u∈[N]

Prudν(u),

which corresponds to initializing RW j according to ν.

Definition 8. Consider the number of active RWs Zt at time
t ∈ Z+. The natural filtration for the random sequence Z ≜
(Zt : t ∈ Z+) is denoted by F• ≜ (Ft : t ∈ Z+) where
Ft ≜ σ(Zs, s ⩽ t).

Consider the graph G′ defined in Definition 4. Since the
original graph G is connected and finite, then the Pac-Man
is reachable from any other node u ∈ [N], i.e., there exists
nu ∈ N such that (P ′

u0)
nu > 0.

9We assume a unique maximum eigenvalue for simplicity. If Q(ζ) has
multiple dominant eigenvalues, the arguments can be extended using a
standard Jordan decomposition.

Definition 9. We define the smallest number of steps to reach
the Pac-Man from node u ∈ [N] as

du ≜ inf
{
n ∈ N : (P ′

u0)
n
> 0
}
.

We define the maximum of the minimum time steps to reach
the Pac-Man from node u ∈ [N] as

d ≜ max
u∈[N]

du. (10)

Accordingly, we define the smallest probability of reaching
the Pac-Man within d steps from node u ∈ [N], as

c ≜ min
u∈[N]

(P ′
u0)

du .

Since the Pac-Man is reachable, nu is finite for each u ∈
[N], then du ⩽ nu and hence is finite. By Definition 4, P ′

u0 >
0 for each u ∈ [N], and then c is positive. Thus, d and c are
well-defined.

Definition 10. Consider a finite connected graph G with d
defined in . During a fixed finite and half-open time interval
T ⊆ R+, we denote the number of random walks that hit
PacMan by DT and the number of RWs generated by GT .

Lemma 1. Consider Zt independent, aperiodic, active RWs at
time t, each following the identical law over a finite connected
graph G with d defined in (10). Then,

E[Zt+d − Zt | Ft] ⩽ −cζZt + (N − 1)d. (11)

Proof: From the definition of D and G from Definition
10, we can write the difference in the number of active RWs
at time t+ d and t as

Zt+d = Zt −D(t,t+d] +G(t,t+d]. (12)

We note that the graph G has (N − 1) benign nodes, and at
most one RW can be generated at each node at each time t,
Thus, we have

E[G(t,t+d] | Ft] ⩽
d−1∑
s=0

(Zt+s ∧ (N − 1)) ⩽ (N − 1)d. (13)

At time t, there are Zt active RWs. From Definition 9, for any
RW Xj with transition probability matrix P , we have

Pru
(
∪dn=1 {Xn,j = 1}

)
⩾ Pru (Xdu,j = 1) ⩾ c,

where Pru is defined in Definition 7. That is, c is the uniform
lower bound on the probability of ending up at the Pac-Man
within d steps, over all possible initial positions. It follows
that the number of deaths for RWs is lower bounded by the
number of active RWs at time t hitting Pac-Man (ignoring the
RWs generated during this interval and hitting Pac-Man), and
hence

E[D(t,t+d] | Ft] ⩾ cζZt. (14)

Taking conditional expectation of (12) given history Ft, sub-
stituting the upper bound on the conditional mean number
of births (13) and the lower bound on the conditional mean
number of deaths (14), we obtain the result.

Corollary 1. Consider independent aperiodic RWs on a finite
connected graph G with identical probability laws and d
defined in (10). For any ϵ > 0, there exists positive constants
b, B, such that B ⩾ b and the random sequence Z satisfies
the following conditions.
(a) If Zt ⩽ B, then E[Zt+d | Ft] ⩽ b.
(b) If Zt > B, then E[Zt+d − Zt | Ft] < −ϵ.

Proof: Let ϵ > 0 and N be the number of nodes in G. We
define B ≜ 1

cζ ((N − 1)d+ ϵ) and b ≜ (1− cζ)B+(N −1)d
for c defined in Definition 9. It follows that b, B are positive
and b ⩽ B.
(a) Let Zt ⩽ B. It follows from (11), that

E[Zt+d | Ft] ⩽ (1− cζ)B + (N − 1)d = b.

(b) Ley Zt > B. It follows from (11) and definition of B,
that

E[Zt+d − Zt | Ft] ⩽ −cζZt + (N − 1)d ⩽ −ϵ.

Definition 11 (Supermartingale). Consider independent ape-
riodic RWs on a finite connected graph G with identical
probability laws and d defined in (10), ϵ > 0, and positive
constants b, B defined in Corollary 1. We define a Lyapunov
function V : R+ → R+ for each z ∈ R+

V (z) ≜ z1{z>B} +B1{z⩽B}. (15)

For t0 ⩾ 0 and k ∈ Z+, we define periodic samples of number
of active RWs and its natural filtration at time t0 + dk as

Mk ≜ V (Zt0+dk), Hk ≜ Ft0+dk.

We define a random sequence M ≜ (Mk : k ∈ Z+) and
filtration H• ≜ (Hk : k ∈ Z+).

Remark 4. By definition, we have V (z)−z ⩽ 0 for all z ∈ R+.
It follows that

Mk+1 −Mk ⩽ Zt+d(k+1) −Mk. (16)

Lemma 2. Sequence M is a supermartingale adapted to
filtration H•.

Proof: We first observe that Zt is Ft measurable, and
hence Mk is a Hk measurable by definition. For each k ∈ Z+,
we can define a Fk measurable event Ak ≜ {Mk ⩽ B}. In
terms of these events, we can write the conditional mean as

E[(Mk+1 −Mk) | Fk] = E[(Mk+1−Mk)(1Ak
+ 1Ac

k
) | Fk].

From Corollary 1, definition (15), and (16), we obtain that the
conditional E[(Mk+1 −Mk)1Ak

| Hk] is upper bounded by

E[Zt+d(k+1) | Hk]1Ak
−B1Ak

⩽ 0.

From definition (15), we have 1Ac
k
Mk = Zt0+dk1Ac

k
. From

Corollary 1, we obtain that the conditional mean E[(Mk+1 −
Mk)1Ac

k
| Hk] is upper bounded by

E([Zt+d(k+1) − Zt+dk) | Hk]1Ac
k
⩽ 0.

Combining the two results, we get the result.

A. Proof of Theorem 1

We define a stopping time τ0 ≜ inf {t ∈ Z+ : Zt = 0}.
If τ0 < ∞, then Zt = 0 for all t ⩾ τ0, which implies
lim supt→∞ Zt <∞.

Therefore, without loss of generality, we consider the case
when Zt > 0 for any finite time t. From the definition of
sequence M and filtration H• in Definition 11, Lemma 2, and
positivity of Z, we observe that M is a positive supermartin-
gale adapted to filtration H•. By the Doob’s supermartingale
convergence Theorem [26], supermartingale M converges to
a limit M∞ almost surely, i.e.

lim
k→∞

Mk = M∞ <∞, a.s.

From the definition of supermartingale M in Definition 11, it
follows that for any t0 ⩾ 0,

lim sup
k→∞

Zt0+dk ⩽ max {B,M∞} <∞.

Since the choice of t0 ∈ Z+ was arbitrary, we have

lim sup
t→∞

Zt <∞, a.s.

APPENDIX C
SOFT PHASE TRANSITION IN COMPLETE GRAPHS

A. Definitions and the Weak Version of AC Algorithm

Definition 12 (Almost fully connected graph G). Let the
killing and forking probabilities ζ = q = 1. Consider a finite
graph G′ from Definition 4 with a single malicious node 1,
and edges

E =

(
[N]

2

)
∪ {(1, d)} \ {(1, n) : n ⩾ 1} .

We call this an almost fully connected graph, and a RW on this
graph with uniform transition probability10 is called uniform
RW on the almost fully connected graph. We assume that the
initial location of each initial uniform RWs on this graph is
sampled i.i.d. uniform from all nodes V , and the duplication
threshold at each benign node is identically Au = A ⩾ 1.

Definition 13 (Lifetime). Consider a RW j ∈ Zt with the
birth time θj and the initial location uj ∈ B. We define its
lifetime as the first time it visits the Pac-Man node, given by

K(j) = inf
{
t ⩾ θj : Xt,j = 0, Xθj ,j = uj

}
. (17)

The distribution of K(j) is independent of the initial location
uj because the graph structure is complete and the transition
matrix is uniform.

Definition 14 (Age of Visiting). Let L
(u,j)
t , for u ∈ B and

t ∈ [θj ,K
(j)], denote the most recent time up to t at which

RW j ∈ Zt visited node u:

L
(u,j)
t = max

{
t′ ∈ [θj , t] : Xt′,j = u,Xθj ,j = uj

}
. (18)

We define the age of visiting (AoV) of node u with respect to
RW j ∈ Zt at time t, denoted H

(u,j)
t , as follows:

10i.e. Puv = 1
N

for all u ∈ B and v ∈ V .

(1) if RW j visits node u at time t for the first time, then

H
(u,j)
t = 0; (19)

(2) if node u was visited by RW j at least once before time
t, then

H
(u,j)
t = t− L

(u,j)
t−1 . (20)

Both L
(u,j)
t and H

(u,j)
t are defined only after the active RW

j ∈ Zt has visited node u. If RW j has not yet visited node
u, or has already been terminated, then L

(u,j)
t and H

(u,j)
t are

assigned a null value.

We specify the AoV of a newly generated RW j at node uj

at time t, following Definition 3 and Definition 14. Suppose
that RW j is generated at node uj at time t, we have j ∈ Zt+1,
and it begins its movement in the next time slot, i.e., at time
t + 1. As the RW j is initialized at node uj at time t, we
define the AoV at that moment as 0, i.e., H(uj ,j)

t = 0.
Instead of analyzing the full AC algorithm, we focus on

a simplified variant known as weak version of AC (W-AC)
algorithm, which is outlined below.

Algorithm 2 Weak Version of AC (W-AC)

1: Input: The graph G, the threshold A ⩾ 0, the forking
probability q = 1, and the indices of initial RWs Z0.

2: for t ⩾ 0 do
3: for j ∈ Zt do
4: If Xj,t = u ∈ B and H

(u,j)
t ⩾ A, RW j forks

a new RW, denoted by j′, as an identical copy of it. Set
H

(u,j′)
t = 0 and Zt+1 = Zt∪{j′}; otherwise, if H(u,j)

t <
A, RW j is moved to one of the neighbors of node u
uniformly.

5: end for
6: end for

B. Proof of Proposition 1

Definition 15 (Duplication Events). Consider any t ⩾ 0 and
j ∈ Zt. Let B(j)

t ∈ {0, 1} be the indicator for a duplication
occurring by RW j ∈ Zt at time t.

From the W-AC algorithm defined in Algorithm 2, we have
the expression for B(j)

t :

B
(j)
t = 1{Xt,j ̸=0}1{

H
(Xt,j,j)

t ⩾A
}. (21)

Definition 16. Define ∆t(A, z) as the expected number of
newly duplicated RWs at time t, given that the current number
of active RWs is Zt = z. That is,

∆t(A, z) ≜ E

∑
j∈Zt

B
(j)
t

∣∣∣∣∣∣Zt = z

 . (22)

1) Expression for ∆t(A, z): In this subsection, we first
derive a closed-form expression for ∆t(A, z). For simplicity
in analysis, conditional on the event Zt = z, we re-label the
active RWs in Zt as [z] without loss of generality. That is,
we assign each j ∈ Zt a new index in [z] via a one-to-
one mapping. Accordingly, the associated variables L(u,j)

t and
H

(u,j)
t are re-indexed under this mapping. With a slight abuse

of notation, we continue to denote the re-indexed random walk
as j, where 1 ⩽ j ⩽ z.

According to Definition 3, each active RW j ∈ [z] was
generated strictly before time t. Consider any j ∈ [z] and
denote Xt,j = u. A new RW is duplicated from RW j if the
following 2 conditions are satisfied: (i) u ∈ B and (ii) the
associated age variable satisfies H

(u,j)
t ⩾ A. We denote every

initial condition of the active RWs in [z] as:

It,z = {(θj , uj) : θj ∈ [0, t), uj ∈ B, j ∈ [z]} . (23)

By the law of total expectation, (22) can be re-written as

∆t(A, z) =
∑
It,z

E

∑
j∈[z]

B
(j)
t

∣∣∣∣∣∣Zt = z, It,z


×Pr (It,z |Zt = z) . (24)

We now focus on analyzing each conditional expectation
term E

[
B

(j)
t

∣∣∣Zt = z, It,z

]
with j ∈ [z]. For each j ∈ [z], let

the lifetime K(j) be defined in Definition 13. When t ⩽ K(j),
we define the first hitting time of node u ∈ B by the RW
j ∈ [z], starting from uj ∈ B, as:

K(j)
u = inf

{
τ ∈ [θj , t] : Xτ,j = u,Xθj ,j = uj

}
. (25)

For each j ∈ [z], we have:

E
[
B

(j)
t

∣∣∣Zt = z, It,z

]
= E

[
B

(j)
t

∣∣∣ 1 ⩽ j ⩽ z, It,z

]
=
∑

u∈[N]

Pr
(
Xt,j = u,H

(u,j)
t ⩾ A | 1 ⩽ j ⩽ z, It

)
=
∑

u∈[N]

Pr
(
Xt,j = u,K(j)

u ⩽ t,H
(u,j)
t ⩾ A | 1 ⩽ j ⩽ z, It

)
≜
∑

u∈[N]

Qu,j . (26)

By the joint distribution factorization, Qu,j defined in (26) can
be computed as follows:

Qu,j = Pr (Xt,j = u | 1 ⩽ j ⩽ z, It,z)

× Pr
(
K(j)

u ⩽ t,H
(u,j)
t ⩾ A

∣∣∣ 1 ⩽ j ⩽ z, It,z, Xt,j = u
)

= Pr (Xt,j = u | 1 ⩽ j ⩽ z, It,z)

×
t∑

k=θj

Pr
(
K(j)

u = k
∣∣∣ 1 ⩽ j ⩽ z, It,z, Xt,j = u

)
× Pr

(
H

(u,j)
t ⩾ A

∣∣∣ 1 ⩽ j ⩽ z, It,z, Xt,j = u,K(j)
u = k

)
.

(27)

Note that RW j was born at time θj , and the killing
probability ζ = 1, it cannot visit the Pac-Man node during
the interval (θj , t]. Therefore:

Q
(1)
u,j ≜Pr(Xt,j = u | 1 ⩽ j ⩽ z, It,z)

=
(N−1

N)t−θj−1 1
N

(N−1
N)t−θj

=
1

N − 1
. (28)

Recall that k is the value of the first hitting time K
(j)
u . For

each k ∈ [θj , t], the event K(j)
u = k implies that RW j cannot

visit node u before time k. Therefore:

Q
(2,k)
u,j ≜ Pr

(
K(j)

u = k
∣∣∣Xt,j = u, 1 ⩽ j ⩽ z, It,z

)
=

Pr
(
K

(j)
u = k,Xt,j = u

∣∣∣ 1 ⩽ j ⩽ z, It,z

)
Pr (Xt,j = u | 1 ⩽ j ⩽ z, It,z)

=


1{uj=u} k = θj

1{uj ̸=u}
1

N − 1

(N − 2

N − 1

)k−θj−1
θj < k < t

1{uj ̸=u}(
N − 2

N − 1
)t−θj−1 k = t.

(29)

Consider the condition H
(u,j)
t ⩾ A. It implies that RW j

cannot visit node u during the interval [t−A, t−1]. Therefore,
if t−A < k, then H

(u,j)
t ⩾ A and K

(j)
u = k are incompatible

and cannot occur simultaneously. Therefore:

Q
(3,k)
u,j ≜ Pr

(
H

(u,j)
t ⩾ A

∣∣∣Xt,j = u,K(j)
u = k, It,z

)
=

Pr
(
H

(u,j)
t ⩾ A,K

(j)
u = k

∣∣∣Xt,j = u, It,z

)
Pr
(
K

(j)
u = k

∣∣∣Xt,j = u, It,z

) .

We evaluate this quantity in three cases:
(i) Case 1: k = θj . Given that Xt,j = u, by definition of

H
(u,j)
t in Definition 14, we have H

(u,j)
t = t− L

(u,j)
t−1 ⩾

1 > 0. Then:

Q
(3,k)
u,j =1{u=uj}1{t−A⩾θj}

×
(
1{A⩾1}(

N − 2

N − 1
)A−1 + 1{A=0}

)
. (30)

(ii) Case 2: θj < k < t. Again, since Xt,j = u, we know
H

(u,j)
t = t− L

(u,j)
t−1 ⩾ 1 > 0. Then:

Q
(3,k)
u,j =1{u̸=uj}1{t−A⩾k}

×
(
1{A⩾1}(

N − 2

N − 1
)A−1 + 1{A=0}

)
. (31)

(iii) Case 3: If k = t, we have:

Q
(3,k)
u,j =1{u̸=uj}1{A=0}. (32)

Substituting (28), (29), (30), (31), and (32) into (27),
substituting (27) into (26), and substituting (26) into (24), we
obtain the expression for ∆t(A, z) directly as follows:

∆t(A, z) =
∑
It,z

Pr (It,z |Zt = z)

×
∑
j∈[z]

 ∑
u∈[N]

Q
(1)
u,j

t∑
k=θj

Q
(2,k)
u,j Q

(3,k)
u,j

 . (33)

2) Proof of Part (a): Since each RW hits the Pac-Man at
node 1 with probability 1

N at every step, and is killed with
probability ζ = 1 upon hitting it, then, given the number of
active RWs Zt = z, the expected number of RWs that die at
time t is

z

N
. (34)

From (22) and (34), given the number of active RWs Zt = z,
we derive

E [Zt+1 |Zt = z] =z
(
1− 1

N
+

∆t(A, z)

z

)
≜ zmt(A, z),

where we define

mt(A, z) ≜ 1− 1

N
+

∆t(A, z)

z
. (35)

Lemma 3. If there exists a positive integer ᾱ, such that when
A ⩾ ᾱ, the following inequality holds

sup
t⩾0

sup
z∈Z+

∆t(A, z)

z
<

1

N
. (36)

Then, we have

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) = 1

for all z0 ⩾ 1.

Proof: Let A ⩾ ᾱ. By assumption (36),

∆t(A, z)

z
<

1

N

holds for all z ∈ Z+ and t ⩾ 0. Then we have

mt(A, z) = 1− 1

N
+

∆t(A, z)

z
< 1

holds for all z ∈ Z+, and t ⩾ 0. We define

ϵ ≜ 1− sup
t⩾0,z∈Z+

mt(A, z) > 0.

Therefore,

E[Zt+1|Zt = z] = zmt(A, z) ⩽ (1− ϵ)z.

This implies

E[Zt+1|Zt] ⩽ (1− ϵ)Zt < Zt. (37)

It follows that {Zt}t is a supermartingale. Since Zt ≥ 0 for
all t, Doob’s Super-Martingale Convergence Theorem ensures
that

Zt → Zℓ, a.s.

Hence,

E[Zt]→ E[Zℓ]. (38)

We now prove that Zℓ = 0 almost surely by contradiction. If
the statement is false, then E[Zℓ] > 0, taking the limit (38)
into (37), we obtain

E[Zℓ] ≤ (1− ϵ)E[Zℓ] < E[Zℓ],

which is a contradiction. Thus, Z∞ = 0 almost surely. This
implies that all RWs are eventually absorbed by the Pac-Man,
and hence

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) = 1

for all z0.
In what follows, we prove the existence of ᾱ. To ensure that

condition (36) holds, we start from Q
(2,k)
j,u defined in (29) and

Q
(3,k)
j,u defined in (30), (31), (32). Without loss of generality,

we consider A ⩾ 1. Specifically:
(a) In (29), since 1

N−1 < 1 and A ⩾ 1, then

Q
(2,k)
j,u <

(N − 2

N − 1

)k−θj−1
, θj ⩽ k ⩽ t. (39)

(b) In (30), (31) and (32), since 1
N ⩽ N−2

N < N−1
N < 1 (when

N ⩾ 3) and A ⩾ 1, then

Q
(3,k)
j,u < (

N − 2

N − 1
)A−1. (40)

Substituting (39) and (40) into (33), we obtain:

∆t(A, z) <z
N − 1

N − 2
(
N − 2

N − 1
)A−1

∑
It,z

Pr (It,z |Zt = z)

=z
N − 1

N − 2
(
N − 2

N − 1
)A−1. (41)

To ensure the condition (36) holds for all t ⩾ 0 and z ∈ Z+,
it suffices to ensure

(
N − 2

N − 1
)A−1 <

N − 2

(N − 1)N
.

Since (N−2
N−1)

A−1 is a decreasing function of A, then

(N−2
N−1)

A−1 < N−2
N(N−1) when A ⩾ 1 +

ln(N−2
(N−1)N

)

ln(N−2
N−1)

≜ ᾱ.
3) Proof of Part (b): Now, we re-visit the recursion:

E
[
Zt+1 | Zt = z

]
= zmt(A, z),

where mt(A, z) is defined in (35):

mt(A, z) ≜ 1− 1

N
+

∆t(A, z)

z
.

Lemma 4. If there exists a positive integer α, such that when
A ⩽ α, the following inequality holds:

inf
t⩾0

inf
z∈Z+

∆t(A, z)

z
>

1

N
. (42)

Then, for any A ⩽ α, we have

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) < 1

for all z0.

Proof: Let A ⩽ α. By assumption (42),
∆t(A, z)

z
>

1

N
holds for all z ∈ Z+ and t ⩾ 0. Then we have

mt(A, z) = 1− 1

N
+

∆t(A, z)

z
> 1

for all z ∈ Z+ and t ⩾ 0. Define

ϵ ≜ inf
t⩾0,z∈Z+

mt(A, z)− 1 > 0.

Then, for all z ∈ Z+,

E[Zt+1|Zt = z] = zmt(A, z) ⩾ (1 + ϵ)z.

This implies

E[Zt+1] ⩾ (1 + ϵ)E[Zt]. (43)

Assume, for contradiction, that

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) = 1

for any z0. Then, limℓ→∞ Zℓ = 0 almost surely, and hence
limℓ→∞ E[Zℓ] = 0. However, by recursively applying (43),
we obtain:

lim
ℓ→∞

E[Zℓ] ⩾ lim
ℓ→∞

(1 + ϵ)ℓz0 →∞,

which contradicts to assumption. Therefore,

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) < 1

for all z0 ∈ Z+.
In what follows, to prove the existence of α. We begin by

examining the case where A = 0. Substituting A = 0 into
(33), we have:

∆t(0, z) =
N − 1

N
z. (44)

Substituting (44) into (35), we observe that the resulting
expression satisfies condition (42) for all t ⩾ 0 and z ∈ Z+.
This implies that A = 0 is always a valid threshold under the
given condition.

Next, we consider the case A = 1. From (28), (29),
(30)∼(32), and (33), we obtain:

∆t(1, z) =
∑
It,z

Pr (It |Zt = z)

×
∑
j∈[z]

(∑
u∈B

1

N

(
1− 1{u ̸=uj}(

N − 2

N − 1
)t−θj−1

))
.

Since t−θj > 1, i.e., t−θj−1 ⩾ 0, and the equality t = θj+1
can not hold for every j ∈ [z] and every It,z , then

∆t(1, z) =
∑
It,z

Pr(It,z | Zt = z)

×
∑
j∈[z]

(
N − 1

N
− N − 2

N
(
N − 2

N − 1
)t−θj−1

)
>

z

N

∑
It,z

Pr(It,z | Zt = z) =
z

N
. (45)

Substituting (45) into (35), we see that condition (42) is
satisfied for all t ⩾ 0 and z ∈ Z+. This confirms that A = 1
is always a valid threshold under the given condition.

For any z0 ∈ Z+, we choose α = 1, then

Pr (∃ t0, ∀ t ⩾ t0, Zt = 0 |Z0 = z0) < 1

for all A ⩽ α, i.e., A ∈ {0, 1}.

APPENDIX D
PROOF OF THEOREM 2

We treat a chain of RWs as a single effective RW and study
its limiting behavior, if it exists. Consider an infinite chain of
RWs {js}s. Let A be the set of absorbing states, i.e., A =
{1, w} if ζ = 1 and A = {w} if ζ ∈ (0, 1). Let u ∈ B denote
the initial location of RW j0. Let ν be a probability measure
on B, and Pru, Prν be defined in Definition 7. The stopping
times of RW j0 with respect to A, starting from Xj0(0) = u
and Xj0(0) ∼ ν, are defined as:

Ku ≜ inf {t > 0 : Xj0(t) ∈ A, Xj0(0) = u} , (46)

Kν ≜ inf {t > 0 : Xj0(t) ∈ A, Xj0(0) ∼ ν} . (47)

We have Pru(Ku <∞) = 1 and Prν(Kν <∞) = 1.

Definition 17. (Active distribution) Consider a strongly con-
nected graph G with absorbing states A, as defined in Defini-
tion 5. Let a chain of RWs {js}s⩾0 be defined in Definition 1.
Let Ku be defined in (46). For any t and I ⊂ B, we define
the active distribution of RW j0 at time t as

ξ0;t(I;u) ≜ Pru
(
Xj0(t) ∈ I | Ku > t

)
. (48)

Let ts denote the birth time of RW js, and suppose that its
initial location Xjs(ts) is drawn from a distribution νs, which
depends on u. For any t ⩾ ts, we define the active distribution
of RW js as

ξs;t(I;u) ≜ Prνs

(
Xjs(t) ∈ I | Kνs

> t− ts
)
, (49)

where the subscript νs emphasizes that the RW is initialized
according to νs. The dependence of νs on u is implicit in this
notation ξs;t(I;u).

Couple the newly created RW with its parent RW such
that, after creation, the new RW is independently reinitialized
as an i.i.d. replica of the original RW. That is, it evolves
independently and has the same probability distribution as
the original RW. Consequently, at any time while the parent
RW remains active, the probability distribution of the newly
created RW coincides with that of an independent copy of the
parent RW. Recall that we remove the waiting time, applying
this argument recursively, at any time t, the active probability
distribution of any active RW coincides with that of any
ancestor, as long as the ancestor remains active. Therefore,
for any s > 0, we have

ξs;t
d
= ξ0;t. (50)

At any time t, we re-parameterize the active distribution of the
the most recently created (i.e., latest-born) RW as ξt. Since the

chain {js}s⩾0 is infinite, we now analyze limiting behavior of
the probability distribution ξt. From (48) and (50), we have

lim
t→∞

ξt(I;u) = lim
t→∞

ξ0;t(I;u)

= lim
t→∞

Pru
(
Xj0(t) ∈ I | Ku > t

)
. (51)

If the limit in (51) exists, it is referred to as the Yaglom limit
[27]. This limit depends on the initial location. Intuitively, the
Yaglom limit captures the long-term distribution of the process
conditioned on survival. It remains to show that the limit
limt→∞ ξt(I;u) exists and to derive its explicit expression.

Definition 18. (Quasi-Stationary Distribution [28]) Consider a
strongly connected graph G with absorbing states A, as defined
in Definition 5. Let Ku be defined in (46). We say that ν is a
quasi-stationary distribution (QSD) of RW j0 if, for all t ⩾ 0
and any set I ⊂ B,

ν(I) = Prν(Xj0(t) ∈ I | Ku > t).

The following Lemma 5 shows that the distribution of a
chain of RWs converges asymptotically to that of a single
RW conditioned on long-term survival. This provides a way
to obtain the explicit expression of limt→∞ ξt(I;u).

Lemma 5. Consider a robustly connected graph G with
absorbing states A, as defined in Definition 5. Let {js}s⩾0

be an infinite chain, as defined in Definition 1. Suppose the
initial RW j0 starts at node u ∈ B. We define the distribution
of the chain at time t as

πchain,t ≜ ξt. (52)

Let t→∞, the distribution of a chain is convergent:

lim
t→∞

πchain,t = ν(ζ) (53)

where ν(ζ) is the left normalized leading eigenvector of Q(ζ)(
as defined in (8) and (9)

)
.

Proof: From Definition 5, the submatrix Q(ζ) is irre-
ducible. By [27, Section 2] or [29, Theorem 16.11], the
irreducibility of Q(ζ) ensures the existence of the correspond-
ing Yaglom limits

(
see (51)

)
, which is convergent in total

variation.
Moreover, since Q(ζ) is irreducible and aperiodic, any

existing Yaglom limit (with any initial state u) coincides with
a QSD, as established in [27, Proposition 1]. Therefore, the
Yaglom limit in (51) is a QSD for every u ∈ B.

In our case, each initial RW is defined on a finite state space
V with a nonempty absorbing set A. The restricted transition
matrix Q(ζ) on the transient states B is reducible and aperiodic.
According to [30], the QSD exists and is unique. As a result,
the Yaglom limit in (51) converges to the same QSD for all
initial states u ∈ B.

Meanwhile, the QSD can be calculated as the leading left
eigenvector of Q(ζ), normalized to sum to one [30, Eqn. (10)
and the third equation on p. 99]. Thus, according to (52), the
limiting distribution limt→∞ πchain,t is given by:

lim
t→∞

πchain,t = ν(ζ).

In each chain of RWs, every child inherits the current model
state (i.e., xt) from its parent. As a result, under the RW-SGD
algorithm, each infinite chain asymptotically behaves as if a
single effective RW is solving a surrogate optimization prob-
lem with a time-varying sampling distribution π̃t. Specifically:

1) When ζ = 1, the absorbing state A = {1, w}, so
π̃t = [0, πchain,t], where πchain;t is a discrete distribution
supported on a finite set of size N , and

lim
t→∞

π̃t = [0, ν(1)].

2) When 0 < ζ < 1, the absorbing state A = {w}, so π̃t =
πchain,t, where πchain;t is a discrete distribution supported
on a finite set of size N + 1, and

lim
t→∞

π̃t = ν(ζ).

APPENDIX E
THE EFFECTIVE TRANSITION PROBABILITY MATRIX P

(ζ)
CHAIN

In fact, as discussed before, we condense the time interval
between the termination of the last RW and the creation of
the next RW, where A represents the set of absorbing states
(as defined in Appendix D), i.e., A = {1, w} if ζ = 1 and
A = {w} if ζ ∈ (0, 1). For any nodes u, v, the transition
probability matrix Pchain can be written as

[Pchain]uv = Pr ({Xj(1) = v} | {Xj(0) = u,Xj(1) /∈ A}) .

Taking marginal distribution of the chain at time 0 as µ and
applying Bayes’ rule, we obtain:

[Pchain]uv =
Pr ({Xj(1) = v,Xj(0) = u,Xj(1) /∈ A})

Pr ({Xj(0) = u,Xj(1) /∈ A})

=
µuQ

(ζ)
uv

µu

∑
v Q

(ζ)
uv

=
Q

(ζ)
uv∑

v Q
(ζ)
uv

.

APPENDIX F
PROOF OF PROPOSITION 2

Proof of Part (1).
Since a chain of RWs behaves like a single RW that

never dies, we can apply the convergence results of RW-SGD.
According to [22]–[24], the standard RW-SGD algorithm con-
verges to a deterministic limit when the stepsize ηt decreases
with the number of iterations and tends to 0. Consequently,
under the same stepsize condition, a chain of RWs converges
to the optimizer of the surrogate optimization problem (5).

Let x̃∗ be the optimizer of either (5). Applying strong
convexity, we obtain:

f(x∗) ≥ f(x̃∗) +∇f(x̃∗)(x∗ − x̃∗) +
µ

2
∥x∗ − x̃∗∥2,

which implies

0 ≥ f(x∗)− f(x̃∗) ≥ ∇f(x̃∗)(x∗ − x̃∗) +
µ

2
∥x∗ − x̃∗∥2.

By Cauchy–Schwarz inequality, it follows that
µ

2
∥x∗ − x̃∗∥2 ≤ −∇f(x̃∗)(x∗ − x̃∗) ≤ ∥∇f(x̃∗)∥∥x∗ − x̃∗∥.

Therefore

∥x̃⋆ − x⋆∥ ≤ 2

µ
∥∇f(x̃⋆)∥.

The equality holds when ∇f(x̃⋆) is co-linear with x̃⋆ − x⋆

[31].
Similarly, using the L-Lipschitz condition, we derive:

L∥x∗ − x̃∗∥ ≥ ∥∇f(x∗)−∇f(x̃∗)∥.

By the optimality conditions, we have:

∇f(x∗) = 0,

which implies

∥x∗ − x̃∗∥ ≥ 1

L
∥∇f(x̃∗)∥.

The equality holds when x̃⋆ − x⋆ aligns with the directional
of maximal curvature of f(x) [31].
Proof of Part (2). This proof follows the same argument as in
[32, Theorem 1], with the necessary substitutions under our
setting. Specifically, by Theorem 2, the modified stationary
distribution of a single effective RW (i.e., the chain of RWs) is
ν̃(ζ) with ζ ∈ (0, 1]. The corresponding transition probability
matrix is given in Appendix E. Based on Assumption 4, we
set w(u) = 1 for all u ∈ V . By substituting ν̃(ζ), Pchain, ηchain,
and the original sampling distribution π into the proofs of [32,
Lemmas 1, 2, Theorem 1], and by artificially condensing the
time interval between the child and its parent, we obtain the
following bounds:

E∥x̃T − x⋆∥ ⩽ 2(1− γµ)T ∥x0 − x⋆∥2 + γLσ2

ηchainµ2

+
∥ν̃(ζ) − π∥2TVσ

2L

µ3
.

APPENDIX G
ADDITIONAL SIMULATIONS

In this section, we present additional simulation results of
Section V.

A. Additional Graphs

Besides the complete graph, we also consider three other
connected graphs, including: (i) a random regular graph with
degree d = 8 (expander graph [33]), (ii) a regular graph with
degree d = 2 (ring topology), and (iii) an Erdős–Rényi graph
with the edge probability p = 0.1.

B. Data Partitioning for the Public Benchmark Dataset

We use the standard MNIST handwritten digit dataset [25].
The dataset is evenly partitioned into 100 disjoint subsets,
with each node is assigned a unique subset. We consider both
i.i.d. and non-i.i.d. data partitioning schemes for distributing
data across network nodes. In the i.i.d. case, the dataset is
uniformly and independently divided into 100 disjoint subsets,
one for each node. In the non-i.i.d. case, data heterogeneity
is introduced by sampling from a Dirichlet distribution [34]:
The concentration parameter α controls the degree of hetero-
geneity: as α→ 10, the partitioning approaches the i.i.d. case;

as α→ 0, the data becomes highly non-i.i.d. Throughout this
paper, we set α = 0.5, which corresponds to a moderate level
of non-i.i.d. partitioning. Under both partitioning schemes,
whenever a RW visits a node, it uniformly samples a mini-
batch of size B = 256 from the node’s local data to perform
a training update.

C. Comparison with GOSSIP-BASED SGD

Another baseline we consider is the classical GOSSIP-
BASED SGD [3]. In this scheme, each node transmits its
locally updated model to all of its neighbors at every iteration,
and model parameters are updated via neighborhood averag-
ing. We incorporate the same adversarial setting as before:
the Pac-Man node independently terminates each incoming
model update with the termination probability ζ. As a result,
the Pac-Man node is unable to reliably incorporate all infor-
mation from its neighbors, leading to biased and incomplete
aggregation.

Fig. 4 shows that the SGD based on AC and DECAFORK
algorithms converge significantly faster than GOSSIP-BASED
SGD: the loss curves of AC and DECAFORK (blue and green
curves, respectively) exhibit much faster decay than that of
the gossip-based method (orange curve). This behavior is ex-
pected. GOSSIP-BASED SGD propagates information through
repeated local averaging, which leads to diffusive informa-
tion spread and systematic attenuation of gradient updates.
Moreover, although the final consensus error of gossip-based
SGD is small, the final average loss remains relatively large.
This indicates that good consensus among nodes does not
necessarily imply a good global model, especially in adver-
sarial environments. In contrast, SGD based on the AC and
DECAFORK algorithms preserve the strength of informative
gradients and enables faster global impact.

Fig. 4: Loss v.s. learning steps on a complete graph: compar-
ison between AC, DECAFORK and gossip-based SGD.

D. Boundedness and Persistence

In Fig. 5, we plot the RW population process {Zt}t∈Z
over time on reglar, ring, and Erdős–Rényi graphs. The y-axis
indicates the number of RWs (averaged over 100 iterations),
and the x-axis denotes the time steps. On each graph, when
the threshold A is small (note that the threshold for “small”
and “large” varies by graph), the RW population stabilizes

at a relatively large value. In contrast, with large A, RW
duplication becomes relatively rare, leading to population
extinction.

(a) random regular graph (b) ring topology

(c) Erdős–Rényi graph

Fig. 5: Number of RWs over time on different graphs.

Although Proposition 1 focuses exclusively on a simplified
version of the AC algorithm on a complete graph, we extend
our investigation by simulating the AC algorithm extinction
behavior on regular, ring and Erdős–Rényi graphs. In Fig. 6,
the y-axis shows the approximated extinction probability11,
while the x-axis denotes the value of A. when A exceeds a
critical value (which depends on the graph topology), extinc-
tion occurs with probability 1. Conversely, when A falls below
this critical threshold, the extinction probability drops sharply
and approaches zero for sufficiently small values of A.

E. Convergence

We begin with experiments on the synthetic dataset. Fig. 7
presents the the convergence performance of RW-SGD under
the proposed AC algorithm, in comparison with the DE-
CAFORK baseline, on regular, ring, and Erdős–Rényi graphs.
In each subfigure, the y-axis represents the value of the global
loss (log scale), while the x-axis denotes the number of time
steps. Across different graph topologies, the loss consistently
decreases over time and eventually reaches zero, indicating
effective convergence.

The distance between the new convergence point and the
original optimal solution, along with the corresponding theo-
retical bounds in the synthetic dateset, is reported in Table II.
This table empirically validate the theoretical guarantees es-
tablished in Proposition 2.

We then conducted experiments on the real-world dataset,
considering both i.i.d. partitioning and non-i.i.d. partitioning
scenarios.

11We approximate the extinction probability by running a large number of
simulations over a long time horizon and computing the ratio of runs in which
the RW population goes extinct to the total number of runs.

(a) random regular graph (b) ring topology

(c) Erdős–Rényi graph

Fig. 6: Extinction probability vs. threshold A under different
graphs.

(a) random regular graph (b) ring topology

(c) Erdős–Rényi graph

Fig. 7: Loss function v.s. learning steps on different graphs.

Fig. 8 and Fig. 9 show the convergence behavior of RW-
SGD under the AC and DECAFORK algorithms, on the public
benchmark dataset [25], using i.i.d. and non-i.i.d. data parti-
tioning across nodes, respectively. In Fig. 8 and Fig. 9, each
subfigure plots the global loss (on the y-axis) over time steps
(on the x-axis). In both partitioning settings, the global loss
drops quickly to near-zero levels and remains stable thereafter,
confirming that the algorithm converges. Moreover, RW-SGD

graph type Complete Regular Ring Erdős–Rényi
∥x̃∗ − x∗∥ 0.019 0.015 0.051 0.018
1
L
∥∇f(x̃⋆)∥ 0.015 0.010 0.048 0.013

1
µ
∥∇f(x̃⋆)∥ 0.044 0.032 0.146 0.035

TABLE II: ∥x̃∗ − x∗∥ and its bounds on different graphs.

(a) complete graph (b) random regular graph

(c) ring topology (c) Erdős–Rényi graph

Fig. 8: Loss function v.s. learning steps on different graphs
under i.i.d. partitioning of the real-world dataset.

exhibits almost identical convergence behavior under all three
self-duplication mechanisms. This aligns with the observations
in Fig. 7, as all three algorithms share the same RW transition
matrix, differing only in their replication mechanisms, not in
how the RWs traverse the network.

Complete Regular Ring Erdős–Rényi
A single SGD

without the Pac-Man 0.9749 0.9748 0.9743 0.9751

AC 0.9732 0.9779 0.9764 0.9709
DeCaFork 0.9725 0.9731 0.9749 0.9712

TABLE III: Testing accuracies on different graphs under i.i.d.
partitioning.

Finally, we evaluate the performance of the final models
across different graphs using testing accuracies as the per-
formance metric. We first examine the surrogate optimization
problem (5), particularly the quasi-stationary distribution ν(1)

(with ζ = 1). Given the target distribution π =
(

1
100 , . . . ,

1
100

)
,

Theorem 2 implies that ν(1) is uniform over the 99 benign
nodes in complete, random regular, and ring graphs, and
approximately uniform in the Erdős–Rényi graph due to its
near-regular structure. This indicates that in the presence of a
Pac-Man node, active RWs under AC and DECAFORK visit
benign nodes uniformly or near-uniformly.

Table III presents the performances of final models under
i.i.d. data partitioning. From this table, we observe that the

(a) complete graph (b) random regular graph

(c) ring topology (c) Erdős–Rényi graph

Fig. 9: Loss function v.s. learning steps on different graphs
under non-i.i.d. partitioning of the real-world dataset.

performances are nearly identical across all graph types,
regardless of whether a Pac-Man node is present. In the case
of the single-SGD baseline without Pac-Man, the RW visits
all nodes uniformly, and each node holds an i.i.d. portion
of the dataset, yielding a faithful representation of the full
data. In the Pac-Man cases, although the Pac-Man node is
never visited, the benign nodes share the same data distribution
(due to the i.i.d. partitioning) and are accessed uniformly (or
approximately so) by active RWs. As the dataset is large (100
nodes with 600 samples each), excluding one node’s data has
negligible effect, and the final models still perform well.

Complete Regular Ring Erdős–Rényi
A single SGD

without the Pac-Man 0.9764 0.9719 0.9782 0.9751

AC 0.9613 0.9611 0.9617 0.9596
DeCaFork 0.9620 0.9606 0.9596 0.9621

TABLE IV: Testing accuracies on different graphs under non-
i.i.d. partitioning.

Table IV shows the results under non-i.i.d. partitioning. We
evaluate the performance of the final models across different
graphs using testing accuracies as the performance metric.
Table IV shows that the presence of a Pac-Man node impacts
performance: the performance in the single SGD without the
Pac-Man outperforms those in the Pac-Man cases, as the RW
has full access to all nodes and thus to the complete data
distribution; in contrast, the active RWs in the Pac-Man cases
never access the Pac-Man node, and the remaining benign
nodes—now with heterogeneous data (due to the non-i.i.d.
partitioning)—no longer provide a representative sample of
the entire dataset, resulting in degraded performance.

	Introduction
	Problem Formulation
	Graph and Random Walks
	Threat Model: The Pac-Man Attack
	RW-based Stochastic Gradient Descent
	Designable Properties of the Decentralized Mechanism

	Average Crossing Algorithm
	Fundamental Analysis
	Population Boundedness
	Phase Transition in Extinction Behavior
	Convergence

	Simulations
	Simulation Setup
	Boundedness and Persistence
	Convergence

	Conclusion
	References
	Appendix A: Preliminaries: Notations, Definitions, and Assumptions
	Appendix B: Proof of Theorem 1
	Proof of Theorem 1

	Appendix C: Soft Phase Transition in Complete Graphs
	Definitions and the Weak Version of AC Algorithm
	Proof of Proposition 1
	Expression for t(A, z)
	Proof of Part (a)
	Proof of Part (b)

	Appendix D: Proof of Theorem 2
	Appendix E: The effective transition probability matrix P()chain
	Appendix F: Proof of Proposition 2
	Appendix G: Additional Simulations
	Additional Graphs
	Data Partitioning for the Public Benchmark Dataset
	Comparison with Gossip-based SGD
	Boundedness and Persistence
	Convergence

